
Internet Technology
02r. Programming with Sockets (Java & TCP)

Paul Krzyzanowski

Rutgers University

Spring 2016

1 February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Sample Client-Server Program

• To illustrate programming with TCP/IP sockets, we’ll write

a small client-server program:

– Client:

• Read a line of text from the user

• Send it to the server; wait for a response (single line)

• Print the response

– Server

• Wait for a connection from a client

• Read a line of text

• Return a response that contains the length of the string and the string

converted to uppercase

• Exit

2 February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Sample Client-Server Program

• We will then embellish this program to:

– Specify a host & port number on the command line

– Allow a client to send multiple lines of text

– Make the server multi-threaded so it can handle concurrent requests

3 February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

A brief diversion: input/output

• With Java, you’ll often layer different input/output stream

classes depending on what you want to do.

• Here are some common ones:

• Input

– InputStream

– BufferedReader

– InputStreamReader

• Output

– OutputStream

– DataOutputStream

– PrintStream

– DataOutputStream

4 February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

A brief diversion: output

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 5

OutputStream The basics – write a byte or a bunch of bytes

DataOutputStream Allows you to write Unicode (multibyte) characters,

booleans, doubles, floats, ints, etc. Watch out if using

this because the other side might not be Java and

might represent the data differently.

The two most useful things here are writeBytes(String

s), which writes a string out as a bunch of 1-byte

values and write(byte[] b, int off, int len), which writes

a sequence of bytes from a byte array.

PrintStream Allows you to use print and println to send characters.

Useful for line-oriented output.

FilterOutputStream Needed for PrintStream. On it’s own, just gives you

the same write capabilities you get with OutputStream

A brief diversion: input

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 6

InputStream The basics – read a byte or a bunch of bytes

BufferedReader Buffers input and parses lines. Allows you to read

data a line at a time via readLine(). You can also use

read(char [] cbuf, int off, int len) to read characters

into a portion of an array.

InputStreamReader You need this to use BufferedReader. It converts

bytes (that you’ll be sending over the network) to Java

characters.

Client: step 1

• Read a line of text from the standard input (usually keyboard)

– We use readLine to read the text. For that, we need to use the

BufferedReader class on top of the InputStreamReader on top of the

system input stream (System.in)

7

String line;

BufferedReader userdata = new BufferedReader(new InputStreamReader(System.in));

line = userdata.readLine();

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Test 1

• Don’t hesitate to write tiny programs if you’re not 100% sure how

something works

• Notice that readLine() removes the terminating newline character

from a line

– If we want to send line-oriented text, we’ll need to suffix a newline (‘\n’) to the string

8

import java.io.*;

public class line {

 public static void main(String args[]) throws Exception {

 String line;

 BufferedReader userdata = new BufferedReader(new InputStreamReader(System.in));

 line = userdata.readLine();

 System.out.println("got: \"" + line + '"');

 }

}

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Client: step 2

• Establish a socket to the server, send the line, and get the result

– Create a socket.

– For now, we will connect to ourselves – the name “localhost” resolves to our local address.

– For now, we will hard-code a port number: 12345

• Get input and output streams from the socket

– The methods getInputStream() and getOutputStream() return the basic streams for the socket

– Create a DataOutputStream for the socket so we can write a string as bytes

– Create a BufferedReader so we can read a line of results from the server

9

DataOutputStream toServer = new DataOutputStream(sock.getOutputStream());

BufferedReader fromServer = new BufferedReader(

 new InputStreamReader(sock.getInputStream()));

Socket sock = new Socket("localhost", 12345); // create a socket and connect

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Client: step 3

• Send the line we read from the user and read the results

• We’re done; print the result and close the socket

10

toServer.writeBytes(line + ‘\n’); // send the line we read from the user

String result = fromServer.readLine(); // read the response from the server

System.out.println(result);

sock.close();

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Our client – version 1

• But we can’t test it yet because we don’t have the server!

11

import java.io.*;

import java.net.*;

public class TCPClient {

 public static void main(String args []) throws Exception {

 String line; // user input

 BufferedReader userdata = new BufferedReader(new InputStreamReader(System.in));

 Socket sock = new Socket("localhost", 12345); // connect to localhost port 12345

 DataOutputStream toServer = new DataOutputStream(sock.getOutputStream());

 BufferedReader fromServer = new BufferedReader(

 new InputStreamReader(sock.getInputStream()));

 line = userdata.readLine(); // read a line from the user

 toServer.writeBytes(line + '\n'); // send the line to the server

 String result = fromServer.readLine(); // read a one-line result

 System.out.println(result); // print it

 sock.close(); // and we’re done

 }

}

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Server: step 1

• Create a socket for listening

– This socket’s purpose is only to accept connections

– Java calls this a ServerSocket

– For now, we’ll use a hard-coded port: 12345

• If the port number is 0, the operating system will assign a port.

– The backlog is the maximum queue length for unserviced arriving

connections

• The backlog is missing or 0, a default backlog will be used

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 12

ServerSocket svc = new ServerSocket(12345, 5); // listen on port 12345

port
max

backlog

Server: step 2

• Wait for a connection

– This method will block until a connection comes in

– When a client connects to port 12345 on this machine, the accept()

method will return a new socket that is dedicated to communicating

to that specific client

13

Socket conn = svc.accept(); // get a connection

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Test 2

• We can now test that a client can connect to the server

• Let’s write a tiny server that just waits for a connection and then exits

• Now run the client in another window

– As soon as the client starts, it will establish a connection and the server will exit

14

import java.net.*;

public class wait {

 public static void main(String args[]) throws Exception {

 ServerSocket svc = new ServerSocket(12345, 5); // listen on port 12345

 Socket conn = svc.accept(); // get a connection

 }

}

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Server: step 3

• Get input/output streams for the socket

– We will create a BufferedReader for the input stream so we can use

readLine to read data a line at a time

– We will create a DataOutputStream for the output stream so we can write

bytes.

15

// get the input/output streams for the socket

BufferedReader fromClient = new BufferedReader(

 new InputStreamReader(conn.getInputStream()));

DataOutputStream toClient = new DataOutputStream(conn.getOutputStream());

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Server: step 4

• Read a line of data from the client (via fromClient)

• Create the result

• Write the result to the client (via writeBytes)

16

toClient.writeBytes(result); // send the result

String line = fromClient.readLine(); // read the data

System.out.println("got line \"" + line + "\""); // debugging! Let’s see what we got

// do the work

String result = line.length() + ": " + line.toUpperCase() + '\n’;

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Server: step 5

• Done! Close the socket

– Close the socket to the client to stop all communication with that

client

– Close the listening socket to disallow any more incoming

connections. Servers often run forever and therefore we often will

not do this.

17

System.out.println("server exiting\n"); // debugging message

conn.close(); // close connection

svc.close(); // stop listening

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Our server – version 1

18

import java.io.*;

import java.net.*;

public class TCPServer {

 public static void main(String args[]) throws Exception {

 ServerSocket svc = new ServerSocket(12345, 5); // listen on port 12345

 Socket conn = svc.accept(); // wait for a connection

 // get the input/output streams for the socket

 BufferedReader fromClient = new BufferedReader(

 new InputStreamReader(conn.getInputStream()));

 DataOutputStream toClient = new DataOutputStream(conn.getOutputStream());

 String line = fromClient.readLine(); // read the data from the client

 System.out.println("got line \"" + line + "\""); // show what we got

 String result = line.length() + ": " + line.toUpperCase() + '\n'; // do the work

 toClient.writeBytes(result); // send the result

 System.out.println("server exiting\n");

 conn.close(); // close connection

 svc.close(); // stop listening

 }

}

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Let’s test it – Test 3

• Compile TCPServer.java and TCPClient.java

 javac *.java

• In one window, run

 java TCPServer

• In another window, run

 java TCPClient

• The client will wait for input. Type something

 Hello

• It will respond with the server’s output:

 5: HELLO

19 February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

• We don’t want the server to exit

• Instead, have it wait for another connection

• Simple:

– Create the ServerSocket

– Then put everything else in a forever loop (for(;;))

– Never close the ServerSocket

• Now we can keep the server running and try running the

client multiple times

20

Version 2

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Our server – version 2

21

import java.io.*;

import java.net.*;

public class TCPServer {

 public static void main(String args[]) throws Exception {

 ServerSocket svc = new ServerSocket(12345, 5); // listen on port 12345

 for (;;) {

 Socket conn = svc.accept(); // get a connection from a client

 BufferedReader fromClient = new BufferedReader(

 new InputStreamReader(conn.getInputStream()));

 DataOutputStream toClient = new DataOutputStream(conn.getOutputStream());

 String line = fromClient.readLine(); // read the data from the client

 System.out.println("got line \"" + line + "\"");

 String result = line.length() + ": " + line.toUpperCase() + '\n'; // do the work

 toClient.writeBytes(result); // send the result

 System.out.println("closing the connection\n");

 conn.close(); // close connection

 }

 }

}

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Version 3: let’s support multiple lines

• Instead of having the server close the connection when a

single line of text is received, allow the client to read

multiple lines of text

– Each line is sent to the server; the response is read & printed

– An end of file from the user signals the end of user input

• This is typically control-D on Mac/Linux/Unix systems (see the stty

command)

22 February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Note: You only care what the end of file character is as a user typing into a

terminal window. As a programmer, you will never see the character and will rely

on the driver to tell you that an end of file has been detected.

Client – Version 3

• We create a while loop to read lines of text

• When readLine() returns null, that means there’s no more.

23

import java.io.*;

import java.net.*;

public class TCPClient {

 public static void main(String argv[]) throws Exception {

 String line; // user input

 BufferedReader userdata = new BufferedReader(new InputStreamReader(System.in));

 Socket sock = new Socket("localhost", 12345); // connect to localhost port 12345

 DataOutputStream toServer = new DataOutputStream(sock.getOutputStream());

 BufferedReader fromServer = new BufferedReader(

 new InputStreamReader(sock.getInputStream()));

 while ((line = userdata.readLine()) != null) { // read a line at a time

 toServer.writeBytes(line + '\n'); // send the line to the server

 String result = fromServer.readLine(); // read a one-line result

 System.out.println(result); // print it

 }

 sock.close(); // we're done with the connection

 }

}

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Version 3 – server changes

• We need to change the server too

– Read lines from a socket until there are no more

– When the client closes a socket and the server tries to read, it will

get an end-of-file: readline() will return a null

– A simple loop lets us iterate over the lines coming in from one client

24

while ((line = fromClient.readLine()) != null) { // while there's data from the client

 // do work on the data

}

System.out.println("closing the connection\n");

conn.close(); // close connection

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

The server handles only one connection

• Run the server in one window

• Run the client in another window

– Type a bunch of text

– Each line produces a response from the server

• Run the client again in yet another window

– Type a bunch of text

– Nothing happens. There’s no connection to the server!

– You have to exit the first client before this one can connect.

• We need to make the server multi-threaded

25 February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Version 4 – add multi-threading to the server

• We define the server to implement Runnable

• Define a constructor: called for each new thread

26

public class TCPServer implements Runnable {

 Socket conn; // this is a per-thread copy of the client socket

 // if we defined this static, then it would be shared among threads

 TCPServer(Socket sock) {

 this.conn = sock; // store the socket for the connection

 }

}

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Version 4 – add multi-threading to the server

• The main function just gets connections and creates threads

27

public static void main(String args[]) throws Exception {

ServerSocket svc = new ServerSocket(12345, 5); // listen on port 12345

 for (;;) {

 Socket conn = svc.accept(); // get a connection from a client

 System.out.println("got a new connection");

 new Thread(new TCPServer(conn)).start();

 }

} This creates the thread’s state

and calls the constructor
This creates the thread of

execution and calls run() in the

thread.

When run returns, the thread

exits.

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Version 4 – add multi-threading to the server

• The per-connection work is done in the thread

28

public void run() {

 try {

BufferedReader fromClient = new BufferedReader(new InputStreamReader(conn.getInputStream()));

 DataOutputStream toClient = new DataOutputStream(conn.getOutputStream());

 String line;

 while ((line = fromClient.readLine()) != null) { // while there's data from the client

 System.out.println("got line \"" + line + "\"");

 String result = line.length() + ": " + line.toUpperCase() + '\n'; // do the work

 toClient.writeBytes(result); // send the result

 }

 System.out.println("closing the connection\n");

 conn.close(); // close connection and exit the thread

 } catch (IOException e) {

 System.out.println(e);

 }

}

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Version 6

• Allow the client to specify the server name on the command line

– If it’s missing, use “localhost”

29

public class TCPClient {

 public static void main(String args[]) throws Exception {

 String line; // user input

 String server = "localhost"; // default server

 BufferedReader userdata = new BufferedReader(new InputStreamReader(System.in));

 if (args.length > 1) {

 System.err.println("usage: java TCPClient server_name");

 System.exit(1);

 } else if (args.length == 1) {

 server = args[0];

 System.out.println("server = " + server);

 }

 Socket sock = new Socket(server, 12345); // connect to localhost port 12345

February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

The end

30 February 4, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

