
This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

CS 419: Computer Security

Paul Krzyzanowski

Week 4: Authentication

© 2024 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Authentication

• Identification: who are you?
• Authentication: prove it
• Authorization: you can do this

Some protocols (or services) combine all three

2November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Cryptographic Authentication

November 10, 2024 3CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Key concept: prove you know a secret (have the key)
Ask the other side to prove they can encrypt or decrypt a random
message with the secret key

November 10, 2024 4

Create a nonce, n
(random bunch of bits)

n

Encrypt the nonce with the
shared key, K

EK(n)
Validate the result:
DK(EK(n)) ≟ n

• This assumes a pre-shared key and symmetric cryptography.
• After that, Alice can encrypt & send a session key.
• Minimize the use of the pre-shared key.

Alice Bob

CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Mutual authentication
• Alice had Bob prove he has the key

• Bob may want to validate Alice as well
⇒ mutual authentication
– Bob will do the same thing: have Alice prove she has the key

November 10, 2024 5CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Combined authentication & key exchange
Basic idea with symmetric cryptography:
Use a trusted third party (Trent) that has all the keys
• Alice wants to talk to Bob: she asks Trent

– Trent generates a session key encrypted for Alice
– Trent encrypts the same key for Bob (ticket)
– Alice can't decrypt the ticket but can send it to Bob

• Authentication is implicit:
– If Alice can encrypt a message for Trent, she proved she knows her key
– If Bob can decrypt the message from Trent, he proved he knows his key

• Trent can also perform authorization
• Weaknesses that we need to address:

– Replay attacks

November 10, 2024 6

A B

T

EA(K)

EB(K)

CS 419 © 2024 Paul Krzyzanowski

EB(K)

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Combined authentication &
key exchange algorithms

7November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Security Protocol Notation
Z || W

– Z concatenated with W

A → B : { Z || W } kA,B
– A sends a message to B
– The message is the concatenation of Z & W and is encrypted by key kA,B, which is shared

by users A & B

A → B : { Z } kA || { W } kA,B
– A sends a message to B
– The message is a concatenation of Z encrypted using A’s key and W encrypted by a key

shared by A and B

r1, r2
– nonces – strings of random bits

8November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Bootstrap problem
How can Alice & Bob communicate securely?

• Alice cannot send a key to Bob in the clear
– We assume an unsecure network

• We looked at two mechanisms:
– Diffie-Hellman key exchange
– Public key cryptography

Let’s examine the problem some more … in the context of
authentication & key exchange

9November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Simple Protocol
Use a trusted third party – Trent – who has all the keys

Trent creates a session key for Alice and Bob

10

TrentAlice
Request session key to Bob

TrentAlice
{ kA,B } kA || { kA,B } kB

BobAlice
{ kA,B } kB

BobAlice
{ m } kA,B

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Problems
• How does Bob know he is talking to Alice?

– Trusted third party, Trent, has all the keys
– Trent knows the request came from Alice since only he and Alice can have the key
– Trent can authorize Alice’s request
– Bob gets a session key encrypted with Bob’s key, which only Trent could have created
• But Bob doesn’t know who requested the session – is the request really from Alice?
• Trent would need to add sender information to the message encrypted for Bob

• Vulnerable to replay attacks
– Eve records the message from Alice to Bob and later replays it
– Bob will think he’s talking to Alice and re-use the same session key

• Protocols should provide authentication & defense against replay attacks

November 10, 2024 11CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Needham-Schroeder
Add nonces – random strings (r1, r2) – to avoid replay attacks

12

TrentAlice
{ Alice || Bob || r1 }

TrentAlice
{ Alice || Bob || r1 || kA,B || { Alice || kA,B } kB } kA

BobAlice
{ Alice || kA,B } kB

BobAlice
{ r2 } kA,B

BobAlice
{ r2 – 1 } kA,B

➀
➁
➂
➃
➄

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Add nonces – random strings – avoid replay attacks
• Alice knows only Bob & Trent can read this

and get the session key.
• Bob knows it’s a request from Alice

TrentAlice
{ Alice || Bob || r1 }

TrentAlice
{ Alice || Bob || r1 || kA,B || { Alice || kA,B } kB } kA

BobAlice
{ Alice || kA,B } kB

BobAlice
{ r2 } kA,B

BobAlice
{ r2 – 1 } kA,B

➀
➁
➂
➃
➄

Needham-Schroeder

13November 10, 2024

• Bob now tries to find out if this is a replay attack
• If it is, Eve will not be able to decipher r2

Message must have been created by Trent & is a response to
the first message (contains r1). Use of r1 ensures it’s not a
replay attack.

This is an authentication step: Bob asks Alice
to prove she knows kA,B

CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Needham-Schroeder Protocol Vulnerability
• We assume all keys are secret

• But suppose Eve can obtain the session key from an old message
(she worked hard, got lucky, and cracked an earlier message)

November 10, 2024 14

BobEve
{ Alice || kA,B } kB

BobEve
{ r2 } kA,B

BobEve
{ r2 – 1 } kA,B

Bob sees this as a legitimate request
approved by Trent. It was … but earlier!

Eve the eavesdropper. She decrypted an old session key and is trying
to get Bob to use it to think he’s talking to Alice.

Needham-Schroeder is still vulnerable to a certain
replay attack … if an old session key is known!

➂
➃
➄

CS 419 © 2024 Paul Krzyzanowski

Replay

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Denning-Sacco Solution
• Problem: replay in the third step of the protocol
– Eve replays the message: { Alice || kA,B } kB

• Solution: use a timestamp T to detect replay attacks
– The trusted third party (Trent) places a timestamp in a message that is encrypted

for Bob
– The attacker has an old session key but not Alice’s, Bob’s or Trent’s keys
– Eve cannot spoof a valid message that is encrypted for Bob

15November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Needham-Schroeder w/Denning-Sacco mods
Use nonces – random strings – AND a timestamp

16

TrentAlice
{ Alice || Bob || r1 }

TrentAlice
{ Alice || Bob || r1 || kA,B || { Alice || T || kA,B } kB } kA

BobAlice
{ Alice || T || kA,B } kB

BobAlice
{ r2 } kA,B

BobAlice
{ r2 – 1 } kA,B

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Problem with timestamps
• Use of timestamps relies on synchronized clocks
– Messages may be falsely accepted or falsely rejected because of bad time

• Time synchronization becomes an attack vector
– Create fake NTP responses
– Generate fake GPS signals

17November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Otway-Rees Protocol: Session IDs

Another way to correct the third message replay problem
• Instead of using timestamps
– Use a random integer, n, that is associated with all messages in the key

exchange

• This is a slightly different protocol (a form of challenge-response)
– Alice first sends a message to Bob

• The message contains the session ID & nonce encrypted with Alice’s secret key
– Bob forwards the message to Trent

• And creates a message containing a nonce & the same session ID encrypted with Bob’s
secret key

– Trent creates a session key & encrypts it for both Alice and for Bob

18November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Otway-Rees Protocol
Use nonces (r1, r2) & session IDs (n)

19

BobAlice
n || Alice || Bob || {r1 || n || Alice || Bob } kA

BobTrent

BobTrent

BobAlice
n || { r1 || kA,B } kA

n || Alice || Bob || {r1 || n || Alice || Bob } kA

{ r2 || n || Alice || Bob } kB

n || { r1 || kA,B } kA || { r2 || kA,B } kB

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

Alice sends the communication
request to Bob – with the
session ID

Bob authenticates himself &
forwards request to Trent

Trent sends the session key to
both Alice & Bob

Alice proves that she can
extract the key

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Otway-Rees Protocol
Use nonces (r1, r2) & session IDs (n)

20

BobAlice
n || Alice || Bob || {r1 || n || Alice || Bob } kA

BobTrent

BobTrent

BobAlice
n || { r1 || kA,B } kA

n || Alice || Bob || {r1 || n || Alice || Bob } kA

{ r2 || n || Alice || Bob } kB

n || { r1 || kA,B } kA || { r2 || kA,B } kB

November 10, 2024

Alice sends the communication request to
Bob – with the session ID

Bob authenticates himself &
forwards request to Trent

CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Kerberos

21November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Kerberos
• Authentication service developed by MIT
– Created as part of Project Athena 1983-1988

• Uses a trusted third party & symmetric cryptography

• Based on Needham Schroeder with the Denning Sacco modification

• Passwords are never sent in clear text
– Assumes only the network can be compromised

• Supported in most all popular operating systems
– Default network authentication used in Microsoft Windows

– Supported in macOS, Linux, FreeBSD, z/OS, …
– Used by Rutgers LCSR to manage NetIDs via the Central Authentication Service (CAS)

November 10, 2024 22CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Kerberos

Users and services authenticate themselves to each other

To access a service:
– User presents a ticket issued by the Kerberos authentication server
– Service uses the ticket to verify the identity of the user

Kerberos is a trusted third party
– Knows all (users and services) passwords
– Responsible for

• Authentication: validating an identity
• Authorization: deciding whether someone can access a service
• Key distribution: giving both parties an encryption key (securely)

23November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Kerberos – General Flow
User Alice wants to communicate with a service Bob

Both Alice and Bob have keys – Kerberos has copies
– key = hash(password)

Step 1:
– Alice authenticates with Kerberos server

• Gets session key and ticket

Step 2:
– Alice gives Bob the ticket, which contains the session key
– Convinces Bob that she got the session key from Kerberos

24November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Kerberos (1): Authorize, Authenticate

{ "Bob’s server", T, kA,B } kA

Alice Kerberos Authentication Service (AS)

{ "Alice", T, kA,B } kB

TICKET

25

{ "Alice” || "Bob" }

eh? (Alice can’t read this!)

Alice decrypts this:
• Gets ID of “Bob’s server”
• Gets session key & timestamp
• Knows message came from AS

“I’m Alice and want to talk to Bob”

If Alice is allowed to talk to Bob,
generate session key, kA,B

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Kerberos (2): Send key

Alice encrypts a timestamp with
session key

Bob decrypts the ticket:
• Ticket was created by Kerberos on

request from Alice
• Gets session key

Decrypts time stamp
• Validates time window
• Prevents replay attacks

{ "Alice", kA,B } kB || { T’ } kA,B

Alice Bob

ticket

26November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Kerberos (3): Authenticate recipient of message

Alice validates timestamp

Encrypt Alice’s timestamp in return
message

Alice Bob

{ T’+1 } kA,B

{Messages} kA,B
Alice & Bob communicate by
encrypting data with kA,B

27November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Kerberos key usage
• Every time a user wants to access a service
– User’s password (key) must be used to decode the message from Kerberos

• We can avoid this by caching the password in a file
– Not a good idea

• Another way: create a temporary password
– We can cache this temporary password
– It's just a session key to access Kerberos – to get access to other services
– Split Kerberos server into

Authentication Service + Ticket Granting Service

28November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Ticket Granting Server (TGS)
• TGS works like a temporary ID

• User first requests access to the TGS
– Contact Kerberos Authentication Service (AS knows all users & their keys)
• Gets back a ticket & session key to the TGS – these can be cached

• To access any service
– Send a request to the TGS – encrypted with the TGS session key

along with the ticket for the TGS
– The ticket tells the TGS what your session key is
– It responds with a session key & ticket for that service

November 10, 2024 29CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

November 10, 2024 30

Kerberos AS + TGS: Step 1
Authentication

Service (AS)
Ticket Granting
Service (TGS)

A

users & user
keys Authorization

Kerberos
Key Distribution Center
(KDC)

(1) Request access to TGS

(2) Here's a session key & ticket for the TGS
 Enter password to decrypt { kTGS,A } kA
 Cache the TGS session key, kTGS,A

B

CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

November 10, 2024 31

Kerberos AS + TGS
Authentication

Service (AS)
Ticket Granting
Service (TGS)

A B

users & user
keys Authorization

Kerberos
Key Distribution Center
(KDC)

(3) TGS-ticket, { T } kTGS,A

(4) Here's a session key & ticket for the Bob
 session key: { "Bob’s server", T, kA,B } kTGS,A
 ticket: { "Alice", T, kA,B } kB

{ Bob, please } kTGS,A

CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

November 10, 2024 32

Kerberos AS + TGS
Authentication

Service (AS)
Ticket Granting
Service (TGS)

A B

users & user
keys Authorization

Kerberos
Key Distribution Center
(KDC)

(5) { "Alice", kA,B } kB || { T’ } kA,B

(6) { T'+1 } kA,B

{ messages }kA,B

CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Using Kerberos
$ kinit

Password: enter password
ask AS for permission (session key) to access TGS
Alice gets:

Compute key (A) from password to decrypt session key kA,TGS and
get TGS ID.

You now have a ticket to access the Ticket Granting Service

{“TGS”, T, kA,TGS } kA

{“Alice”, kA,TGS } kTGS

33

TGS Ticket

Session key & encrypted timestamp

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Using Kerberos
$ rlogin somehost

 rlogin uses the TGS Ticket to request a ticket for the rlogin service
on somehost

{“rlogin@somehost”, kA,R} kA,TGS

{“Alice”, kA,R} kR

{“Alice”, kA,TGS} kTGS, {T} kA,TGS
rlogin TGS

kA,R = session key
for rlogin

ticket for rlogin server
on somehost

Alice sends session key, S, to TGS

Alice receives session key for rlogin service & ticket to pass to rlogin service

34November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Summary: Combined authentication & key exchange
Basic idea with symmetric cryptography:
Use a trusted third party (Trent) that has all the keys
• Alice wants to talk to Bob: she asks Trent
– Trent generates a session key encrypted for Alice
– Trent encrypts the same key for Bob (ticket)

• Authentication is implicit:
– If Alice can decrypt the session key, she proved she knows her key
– If Alice can decrypt the session key, he proved he knows his key

• Weaknesses that we had to fix:
– Replay attacks – add nonces – Needham-Schroeder protocol
– Replay attacks re-using a cracked old session key
• Add timestamps: Denning-Sacco protocol, Kerberos
• Add session IDs at each step: Otway-Rees protocol

November 10, 2024 35CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Public Key Based Key Exchange

We saw how this works…
• Alice’s & Bob’s public keys known to all: eA, eB
• Alice & Bob’s private keys are known only to the owner: da, db

• Simple protocol to send symmetric session key, kS:

36

{ kS } eBA B

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Adding authentication
• Have Bob prove that he has the private key
– Same way as with symmetric cryptography – prove he can encrypt or decrypt

37

{ r1 } eB

A B

Create nonce, r1

r1

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Adding mutual authentication
• Bob asks Alice to prove that she has her private key

38

{ r1 } eB

A B

Create nonce, r1

r1

r2
{ r2 } eA

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Adding identity binding
• How do we know we have the right public keys?

• Get the public key from a trusted certificate
– Validate the signature on the certificate before trusting the public key within

39

{ r1 } eB || CA
A B

CB

{ r2 } eB

{ r2 } eA || r1

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Cryptographic toolbox
• Symmetric encryption

• Public key encryption

• Hash functions

• Random number generators

40November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

User Authentication

November 10, 2024 41CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

November 10, 2024 42

Three Factors of Authentication

1. Ownership Key, card Can be stolen
Something you have

2. Knowledge Passwords,
PINs

Can be guessed,
shared, stolenSomething you know

3. Inherence Biometrics
(face, fingerprints)

Requires hardware
May be copied
Not replaceable if lost or stolenSomething you are

CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Multi-Factor Authentication (MFA)
Factors may be combined
• ATM machine: 2-factor authentication (2FA)
– ATM card something you have
– PIN something you know

• Password + code delivered via SMS: 2-factor authentication
– Password something you know
– Code something you have: your phone

Two passwords ≠ Two-factor authentication
The factors must be different

November 10, 2024 43CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Authentication: PAP
Password Authentication Protocol

login, password

OKclient server

• Unencrypted, reusable passwords
• Insecure on an open network
• Also, the password file must be protected from open access
– But administrators can still see everyone’s passwords

What if you use the same password on Facebook as on Amazon?

44

name:password
database

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Passwords are bad
• Human readable & easy to guess

– People usually pick really bad passwords

• Easy to forget

• Usually short

• Static ... reused over & over
– Security is as strong as the weakest link
– If a username (or email) & password is stolen from one server, it might be usable on others

• Replayable
– If someone can grab it or see it, they can play it back

November 10, 2024 45CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

It's not getting better

Top passwords by year 2015-2019: SplashData; 2020-2023: NordPass

Rank 2015 2016 2017 2018 2019 2020 2021 2022 2023

1 123456 123456 123456 123456 123456 123456 123456 password 123456

2 password password password password 123456789 123456789 123456789 123456 admin

3 12345678 12345 12345678 123456789 qwerty picture1 12345 123456789 12345678

4 qwerty 12345678 qwerty 12345678 password password qwerty guest 123456789

5 12345 football 12345 12345 1234567 12345678 password qwerty 1234

6 123456789 qwerty 123456789 111111 12345678 111111 12345678 12345678 12345

7 football 1234567890 letmein 1234567 12345 123123 111111 111111 password

8 1234 1234567 1234567 sunshine iloveyou 12345 123123 12345 123

https://en.wikipedia.org/wiki/List_of_the_most_common_passwords
46

Recent large-scale leaks of password from servers have shown that people
DO NOT pick good passwords

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

https://nordpass.com/most-common-passwords-list/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Policies to the rescue?
Password rules

“Everyone knows that an exclamation point is a 1, or an I, or the
last character of a password. $ is an S or a 5. If we use these
well-known tricks, we aren’t fooling any adversary. We are
simply fooling the database that stores passwords into thinking
the user did something good”
 — Paul Grassi, NIST

Periodic password change requirement problems
– People tend to change passwords rapidly to exhaust the

history list and get back to their favorite password
– Forbidding changes for several days enables a denial of service

attack
– People pick worse passwords, incorporating numbers,

months, or years

November 10, 2024 48

https://pages.nist.gov/800-63-3/sp800-63b.html#sec5
https://fortune.com/2017/05/11/password-rules/

CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

NIST recommendations – 28 Aug 2024 Draft
• Do not:

– Require periodic password changes
– Impose composition or complexity requirements

(certain # of numbers, letters, symbols)
– Require passwords to be at least 8 characters long
– Store a password hint that is accessible to others
– Use knowledge-based authentication (KBA) ("what was the name of your pet?")
– Validate a truncated version of the password
– Reuse recent passwords

• Prefer
– Passwords should be a minimum of 15 characters long, support at least 64 chars
– Unicode and ASCII should be permitted

• Avoid
– Passwords obtained from databases of previous breaches
– Dictionary words and common phrases
– Repetitive or sequential characters (e.g. ‘aaaaa’, ‘1234abcd’)
– Context-specific words, such as the name of the service, the username, and derivatives

November 10, 2024 50

https://pages.nist.gov/800-63-4/sp800-63b.html

CS 419 © 2024 Paul Krzyzanowski

https://arstechnica.com/security/2024/09/nist-proposes-barring-some-of-the-most-nonsensical-password-rules/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

PAP: Reusable passwords
Problem #1: Open access to the password file
What if the password file isn’t sufficiently protected and an intruder gets hold of it? All
passwords are now compromised!

Even if an admin sees your password, this might also be your password on other
systems.

How about encrypting the passwords?

• Where would you store the key?

• Adobe did that
– 2013 Adobe security breach leaked 152 million Adobe customer records
– Adobe used encrypted passwords
• But the passwords were all encrypted with the same key
• If the attackers steal the key, they get the passwords

51November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Poor Password Management
Adobe security breach (November 2013)
– 152 million Adobe customer records …

 with encrypted passwords
– Adobe encrypted passwords with a symmetric key

algorithm
… and used the same key to encrypt every password!

52

Frequency Password
1 1,911,938 123456
2 446,162 123456789
3 345,834 password
4 211,659 adobe123
5 201,580 12345678
6 130,832 qwerty
7 124,253 1234567
8 113,884 111111
9 83,411 photoshop

10 82,694 123123
11 76,910 1234567890
12 76,186 000000
13 70,791 abc123
14 61,453 1234
15 56,744 adobe1
16 54,651 macromedia
17 48,850 azerty
18 47,142 iloveyou
19 44,281 aaaaaa
20 43,670 654321
21 43,497 12345
22 37,407 666666
23 35,325 sunshine
24 34,963 123321

Top 26 Adobe Passwords
November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

53

Meta stored 600 million Facebook and
Instagram passwords in plain text
William Gallagher • September 27, 2024

Across Facebook and Instagram, Meta has been storing more than half a billion users' passwords in plain text,
with some easily readable for more than a decade.

The issue was first uncovered in 2019 when Facebook admitted to "hundreds of millions" of passwords being stored
unencrypted. Facebook, now Meta, said that the passwords were not available outside of the company — but also
admitted that around 2,000 engineers had made about 9 million queries on that user database.

Now Meta's operation in Ireland has finally been fined $101.5 million after a five-year investigation by the Irish Data
Protection Commission (DPC). The fine is levied under Europe's stringent General Data Protection Regulation (GDPR).

"It is widely accepted that user passwords should not be stored in plaintext, considering the risks of abuse that arise from
persons accessing such data," said Graham Doyle, Deputy Commissioner at the DPC, in a statement about the fine. "It
must be borne in mind, that the passwords the subject of consideration in this case, are particularly sensitive, as they
would enable access to users' social media accounts."

https://appleinsider.com/articles/24/09/27/meta-stored-600-million-facebook-and-instagram-passwords-in-plain-text

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

PAP: Reusable passwords

Solution:
Store a hash of the password in a file
– Given a file, you don’t get the passwords, only their hashes

• Hashes are one-way functions
• Example, Linux passwords hashed with a SHA-512 hash (SHA-2)

– Have to resort to a dictionary or brute-force attack

54November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Dictionary attack vs. Brute force
• Suppose you got access to a list of hashed passwords
• Brute-force, exhaustive search: try every combination
– Letters (A-Z, a-z), numbers (0-9), symbols (!@#$%...)
– Assume 30 symbols + 52 letters + 10 digits = 92 characters
– Test all passwords up to length 8
– Combinations = 928 + 927 + 926 + 925 + 924 + 923 + 922 + 921 = 5.189 × 1015
– If we test 10 billion passwords per second: ≈ 6 days

• But some passwords are more likely than others
– 1,991,938 Adobe customers used a password = “123456”
– 345,834 users used a password = “password”

• Dictionary attack
– Test lists of common passwords, dictionary words, names
– Add common substitutions, prefixes, and suffixes

55

Easiest to do if
the attacker
steals a hashed
password file –
so we read-
protect the
hashed
passwords to
make it harder
to get them

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski 60

• Note: the benchmarks changed from MD5 to bcrypt. Bcrypt is
designed to be slow – about a million times slower than MD5.

• macOS uses SHA-512
• Linux supports different types of hashes and the default

depends on the distribution. yescrypt is common as a memory-
intensive, slow hash that isn’t optimized by GPUs.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Longer passwords
English text has an entropy of
about 1.2-1.5 bits per character

Random text has an entropy ≈
log2(1/95) ≈ 6.6 bits/character

61

Assume 95 printable characters

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

How to speed up a dictionary attack
Create a table of precomputed hashes

Now we just search a table for the hash to find the password

62November 10, 2024

SHA-256 Hash password

8d969eef6ecad3c29a3a629280e686cf0c3f5d5a86aff3ca12020c923adc6c92 123456

5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8 password

ef797c8118f02dfb649607dd5d3f8c7623048c9c063d532cc95c5ed7a898a64f 12345678

1c8bfe8f801d79745c4631d09fff36c82aa37fc4cce4fc946683d7b336b63032 letmein

… …

CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Salt: defeating dictionary attacks
Salt = random string (typically up to 16 characters)
– Concatenated with the password
– Stored with the password file (it’s not secret)

 "VhsRrsFA" + "password"
Even if you know the salt, you cannot use precomputed hashes to search for a password
(because the salt is prefixed to the password string and becomes part of the hash)

You will not have a precomputed hash("VhsRrsFApassword")

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski 63

Example:
SHA-256 hash of "password", salt = "VhsRrsFA”= hash("VhsRrsFApassword") =
b791b1b572c0025ef30ecc5fc5ecc5c623f52fca66250560fce8d22623b166c8

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Linux example – salted hashes
• The passwords are both monkey

• One has a salt of mysalt123 and the other mysalt124 – one byte off

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski 64

$ mkpasswd --method=sha-256 --salt=mysalt123 monkey
5mysalt123$uw7/eKvgmWOARTME9U2eQIWhO0efP1mPfK9rnXmUBLD

mkpasswd --method=sha-256 --salt=mysalt124 monkey
5mysalt124$sBfthw62ybrQg04PEECUBnJFSW6BV5xOV/5hoswQtS/

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Defenses
• Use longer passwords
– But can you trust users to pick ones with enough entropy?

• Rate-limit guesses
– Add timeouts after an incorrect password

• Linux waits about 3 secs – and terminates the login program after 5 tries

• Lock out the account after N bad guesses
– But this makes you vulnerable to denial-of-service attacks

• Use a slow algorithm to make guessing slow
– OpenBSD bcrypt Blowfish password hashing algorithm

65November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

People forget passwords
Especially seldom-used ones. How can we handle that?

66November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

Email them? – Common solution
– Requires that the server stores the password (not a hash)
– What if someone reads your email?

Reset them? – How do you authenticate the requester?
– Usually send reset link to email address created at registration
– What if someone reads your mail, or you no longer have that address?

Provide hints? – An attacker can get the hints too

Write them down? – OK if the threat model is electronic only

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Reusable passwords in multiple places
• People often use the same password in different places

• If one site is compromised, the password can be used elsewhere
– People often try to use the same email address and/or username

• This is the root of phishing attacks

67November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

PC Magazine, September 21, 2021

https://www.pcmag.com/news/stop-using-the-same-password-on-multiple-sites-no-really

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Credential Stuffing & Password Spraying Attacks
• Credential Stuffing Attack

– Assumes people might use the same password on different accounts
– Get credentials for a user (e.g., buy them on a dark web marketplace)
– Log in to lots of unrelated accounts trying those credentials

 Example:
 If you got name="bobsmith1998", password="monkey123" on facebook.com
 the same login credentials might work on paypal.com

• Password Spraying Attack
– Instead of trying multiple guesses

for one account, try a common
password on a huge number of
accounts

– Avoids lockout and detection from
trying too many passwords

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski 68

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Password Managers
Software that stores passwords in an encrypted file

• Do you trust the protection?
– The reputation of the company & its security policies
– The synchronization capabilities?

• Can malware get to the database?

• In general, these are good
– Way better than storing passwords in a file
– Encourages having unique passwords per site
– Generates strong passwords
– Password managers may have the ability to recognize web sites

& defend against phishing while providing auto-complete convenience
for legitimate sites

69November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

November 10, 2024 70

LastPass fixes bug that could let
malicious websites extract your
last used password
Even password managers have security bugs
By Jon Porter • Sep 16, 2019

LastPass has patched a bug that would have allowed a
malicious website to extract a previous password
entered by the service’s browser extension. ZDNet
reports that the bug was discovered by Tavis Ormandy,
a researcher in Google’s Project Zero team, and was
disclosed in a bug report dated August 29th. LastPass
fixed the issue on September 13th, and deployed the
update to all browsers where it should be applied
automatically, something LastPass users would be
smart to verify.

Password managers have a security
flaw. But you should still use one.
Exclusive: A new study finds bugs in five of the most popular
password managers. So how is it safe to keep all your eggs in
one basket?
By Geoffrey A. Fowler • Feb 19, 2019

CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski 71

Design flaw has Microsoft
Authenticator overwriting MFA
accounts, locking users out
By Evan Schuman
August 5, 2024

With use of multi-factor authentication rising, end-users can find
themselves fiddling with codes and authentication apps frequently
throughout their days. For those who rely on Microsoft Authenticator,
the experience can go beyond momentary frustration to full-blown
panic as they become locked out of their accounts.

That’s because, due to an issue involving which fields it uses,
Microsoft Authenticator often overwrites accounts when a user adds
a new account via QR scan — the most common method of doing
so.

https://www.csoonline.com/article/3480918/design-flaw-has-microsoft-authenticator-overwriting-mfa-accounts-locking-users-out.html

Warning As
1Password, DashLane,
LastPass And 3 Others
Leak Passwords
By Davey Winder
December 11, 2023

Six of the most popular password managers
have been called out by security researchers
who uncovered a major vulnerability that
impacts the Android autofill function. The
AutoSpill vulnerability enables hackers to bypass
the security mechanisms protecting the autofill
functionality on Android devices, exposing
credentials to the host app calling for them.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

PAP: Reusable passwords
Problem #2: Network sniffing or shoulder surfing

Passwords can be stolen by observing a user’s session in person or over a network:
– Snoop on http, telnet, ftp, rlogin, rsh sessions
– Trojan horse
– Social engineering
– Key logger, camera, physical proximity
– Brute-force or dictionary attacks

Solutions:

(1) Use an encrypted communication channel

(2) Use multi-factor authentication, so a password alone is not sufficient

(3) Use one-time passwords

73November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

One-time passwords
Use a different password each time
– If an intruder captures the transaction, it won’t work next time

Three forms

1. Sequence-based: password = f(previous password) or f(secret, sequence#)

2. Challenge-based: f(challenge, secret)

3. Time-based: password = f(time, secret)

74November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

S/key authentication
• One-time password scheme

• Produces a limited number of authentication sessions

• Relies on one-way functions

75November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Authenticate Alice for 100 logins

• Pick a random number, R

• Using a one-way function (e.g., a hash function), f(x):

 x1 = f(R)
 x2 = f(x1) = f(f(R))
 x3 = f(x2) = f(f(f(R)))
 … …
 x100 = f(x99) = f(…f(f(f(R)))…)

• Then compute:
 x101 = f(x100) = f(…f(f(f(R)))…)

S/key authentication

Give this list
to Alice

76November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

S/key authentication
Authenticate Alice for 100 logins

Store x101 in a password file or database record
associated with Alice

alice: x101

77November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

S/key authentication
Alice presents the last number on her list:

 Alice to host: { “alice”, x100 }

Host computes f(x100) and compares it with the value in the database
 if f(x100 provided by alice) = passwd(“alice”)
 replace x101 in db with x100 provided by alice
 return success
 else
 fail

Next time: Alice presents x99

If someone sees x100 there is no way to generate x99.

78November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

S/Key → OPIE
S/Key slightly refined by the U.S. Naval Research Laboratory (NRL)
• OPIE = One time Passwords In Everything

– Comes with FreeBSD, OpenBSD; available on Linux & other POSIX platforms
– Use /usr/sbin/opielogin instead of standard /bin/login program

• Same iterative generation as S/Key
 starting_password = Hash(seed, secret_pass_phrase)
The seed can differ among applications and enables a user to use the same passphrase
securely for different applications

• Operates in two modes
– Sequence-based: pre-generate a sequence of one-time passwords
• A password is represented as 6 short words

– Challenge-based: user is presented with a sequence number
• Computes the proper password from a stored seed value

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski 79

See http://manpages.ubuntu.com/manpages/bionic/man4/opie.4freebsd.html

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Authentication: CHAP
Challenge-Handshake Authentication Protocol

challenge

hash(challenge, secret)

OK

client server

Has shared secret Has shared secret

The challenge is a nonce (random bits).
We create a hash of the nonce and the secret.
An intruder does not have the secret and cannot do this!

80

= nonce

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

CHAP authentication

Alice network host

“alice” “alice” look up alice’s
key, K

generate random
challenge number CC

R ’ = f(K,C)

R ’ R = f(K, C)

R = R ’ ?“welcome”

an eavesdropper does not see K

81November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Passkeys - WebAuthn
Passkeys = Passwordless login – endorsed by Apple, Google,
Microsoft
– Avoid problems of having users choose strong, unique passwords
– Avoids phishing attacks
– Based on public key cryptography

• Credentials can be backed up and replicated across user devices

Device generates public/private key pair for a specific service
– Private key is stored locally – the service never sees it

• Its use can be authorized with Touch ID, Face ID, local device/user password
– Public key is sent to the server – it associates it with the user account

CS 419 © 2024 Paul Krzyzanowski 83November 10, 2024

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

CS 419 © 2024 Paul Krzyzanowski 84

Passkeys – Setup
User Alice Service

username: alice

Create public/private key pair for
the service
Elliptic Curve or RSA algorithms Public key

Store public key with user info
Enable lookup when presented with a user
login name

See https://passage.id/post/what-is-webauth

Password and/or authentication code Conventional login

Note: the public key is not secret

Store private key securely
Accessible via local password or
biometrics.
Associate this key with the service.
Each passkey is unique for each service

November 10, 2024

https://passage.id/post/what-is-webauth

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

CS 419 © 2024 Paul Krzyzanowski 85

Passkeys – Login
User Alice Service

username: alice

Here's a challenge: XdQLAxBlL1…

Generate signature for challenge:
Encrypt hash(challenge) with your
private key for this service signature(challenge)

Validate signature:
Decrypt signature with the user's public key
and compare it with hash(challenge)

Welcome, Alice!

Authorize access to
private key via Touch ID,
Face ID, password, …

See https://passage.id/post/what-is-webauth
November 10, 2024

https://passage.id/post/what-is-webauth

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

TOTP: Time-Based One-Time Passwords
• Both sides share a secret key
– Sometimes sent via a QR code so the user can scan it into the TOTP app

• User runs TOTP function to generate a one-time password
 one_time_password = hash(secret_key, time)

• User logs in with: name, password, and one_time_password

• Service generates the same password
 one_time_password = hash(secret_key, time)

• Typically 30-second granularity for time

86November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

Password

Hash function

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Time-based One-time Passwords
Popular authenticators:

– Microsoft Two-step Verification
– Google Authenticator
– Facebook Code Generator
– Okta
– Duo

Used by
– Microsoft Azure, 365
– Amazon Web Services
– Bitbucket
– Dropbox
– Evernote
– Zoho
– Wordpress
– 1Password
– Many others…

November 10, 2024 87CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

HOTP: Hash-Based One-Time Passwords
• Both sides share a secret key, like TOTP

• Both sides have a counter

• User runs TOTP function to generate a one-time password
 one_time_password = hash(secret_key, counter)

• User logs in with: name, password, and one_time_password

91November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

Password

Hash function

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Example Yubikey's Yubico One Time Password
HOTP = Hash-based One-Time Password

OTP = hash(hardware_id, passcode, counter)
Passcode generated on the device
from session counters,
previous values,
other sources

92November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

Decrypt with
pre-shared AES key

See https://developers.yubico.com/OTP/OTPs_Explained.html

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

SMS/Email/Push-based Authentication
• Second factor = your possession of a phone (or computer)

• After login, sever sends you a code via push notifications or SMS (or email)

• Entering it is proof that you can receive the message

• Dangers
– SIM swapping attacks

(social engineering on the phone company)
• Targeted but viable for high-value targets

– Social engineering to get email credentials

CS 419 © 2024 Paul Krzyzanowski 93

https://www.engadget.com/canada-cryptocurrency-arrest-171617452.html

November 10, 2024

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Number Matching Authentication
• Push notifications work but may be vulnerable to user fatigue
– A careless user might accidentally press Approve even if they didn't initiate a login

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski 94

https://www.cisa.gov/sites/default/files/publications/fact-sheet-implement-number-matching-in-mfa-applications-508c.pdf

• Number Matching Authentication forces the user to
enter numbers on the authenticator's screen
– A login attempt causes the authentication system to:
• Display a number on the login screen
• Send a push notification to the user's phone

– The user has to enter the number they see on the login screen
– The number is sent to the authentication service
– If it matches the generated number then the authentication is complete

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Number Matching Authentication
Supported by
– Microsoft
– Duo
– Okta

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski 95

https://www.cisa.gov/sites/default/files/publications/fact-sheet-implement-number-matching-in-mfa-applications-508c.pdf

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Man-in-the-Middle Attacks (MitM)
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

96

Alice Mike Bob

Hi Bob, I’m Alice

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Man-in-the-Middle Attacks (MitM)
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

97

Alice Mike Bob

Hi Bob, I’m Alice Hi Bob, I’m Alice

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Man-in-the-Middle Attacks (MitM)
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

98

Alice Mike Bob

What’s your password? What’s your password?

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Man-in-the-Middle Attacks (MitM)
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

99

Alice Mike Bob

It’s 123456 It’s 123456

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Man-in-the-Middle Attacks (MitM)
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

100

Alice Mike Bob

So long, sucker! Welcome, Alice!

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Man-in-the-Middle Attacks (MitM)
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

101

Alice Mike Bob

Huh? Download my files

November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Guarding against man-in-the-middle attacks
• Use a covert communication channel
– The intruder won’t have the key
– Can’t see the contents of any messages

• Use signed messages for all communication
– Signed message = { message, private-key-encrypted hash of message }
– Both parties can reject unauthenticated messages
– The intruder cannot modify the messages

• Signatures will fail (they will need to know how to encrypt the hash)

• But watch out for replay attacks!
– May need to use session numbers or timestamps

102November 10, 2024 CS 419 © 2024 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The End

November 10, 2024 103CS 419 © 2024 Paul Krzyzanowski

