
CS 419: Computer Security

Paul Krzyzanowski

Week 6: Part 2
 POSIX Permissions

© 2024 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

File permissions
• Access isn’t all or nothing

• Objects can have different access permissions

UNIX (POSIX) permission model
– Access permissions: read (r), write (w), execute (x)
• All independently set

– Each file has an owner

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski 2

File A
rw
File B
r
File C
rxAlice

File D
rw
File E
r
File F
rwxBob

Example: Limited ACLs in POSIX systems
• Problem: an ACL takes up a varying amount of space
– Won’t fit in a fixed-size inode

• UNIX Compromise:
– A file defines access rights for three domains: the owner, the group, and everyone else
– Permissions
• Read, write, execute (for files), search (for directories)
• Set user ID: execute with user permissions of the file’s owner
• Set group ID: execute with the group permissions of the file’s group

– Default permissions set by the umask system call
– chown system call changes the object’s owner
– chgrp system call changes the object’s group
– chmod system call changes the object’s permissions

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski 3

How do you share files?
• Groups & everyone else (other)

• A user has one user ID but may belong to multiple groups
– One current default group ID for new objects
– Multiple groups

• Other = all others (users who are not the owner or group members)

• File access permissions are expressed as:

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski 4

rwxrwxrwx

user
group

other
$ ls -l /bin/ls
-rwxr-xr-x 1 root wheel 38624 Dec 10 04:04 /bin/ls

Permission checking
if you are the owner of the file
 only owner permissions apply

if you are part of a group the file belongs to
 only group permissions apply

else “other” permissions apply

I cannot read this file even if I’m in the localaccounts group:
$ ls -l testfile

 ----rw---- 1 paul localaccounts 6 Jan 30 10:37 testfile

5October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

Execute permission
• Distinct from read

• You may have execute-only access
– This takes away your right to copy the file
 … or inspect it
– But the OS can load it & run it

6October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

Windows
• Windows has users & groups but more permissions
– Read, write, execute
– Also: delete, change permission, change ownership

• Users & resources can be partitioned into groups & domains
– Each domain can have its own administrator
• HR can manage users
• Individual departments can manage printers

• Trust can be inherited in one or both directions
– department resources domains may trust the user domain
– user domain may not trust department resources domains

7October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

What about directories?
• Directories are just files that map names to inode numbers

• Permissions have special meaning
– Write = permission to create a file in the directory
– Read = permission to list the contents of a directory
– Execute = permission to search through the directory

• If you have write access to the directory of a file, you can delete the file
– Even if you don’t have write access to the file itself

• If you don’t have write access to the directory
– You cannot create or delete a file … even if you have write access to it

8October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

Changing permissions
The chmod command
• Set permissions
$ chmod u=rwx,g=rx,o= testfile
$ ls -l testfile
-rwxr-x--- 1 paul localaccounts 6 Jan 30 10:37 testfile

• Add permissions
$ chmod go+w testfile
$ ls -l testfile
-rwxrwx-w- 1 paul localaccounts 6 Jan 30 10:37 testfile

• Remove permissions
$ chmod o-w testfile
$ ls -l testfile
-r-xrwx--- 1 paul localaccounts 6 Jan 30 10:37 testfile

9

user = read, write, execute
group = read, execute
other = -none-

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

Changing permissions
Or the old-fashioned way – specify an octal bitmask

• Set permissions
$ chmod 754 testfile
$ ls -l testfile
-rwxr-xr-- 1 paul localaccounts 6 Jan 30 10:37 testfile

10

7 5 4
111 101 100
rwx r-x r--
user group other

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

File permissions are stored in the file's inode

11

12 Direct block pointers

Direct block

Single Indirect block

Direct block

Indirect block
Double indirect block

Triple indirect block

Data block Data block

Data block

entries =
block size/(4 bytes per block pointer)

File info

inode

Owner id, group id, permissions,
access/creation/modification
times

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

Sometimes groups aren’t enough
Access Control Lists (ACL)

• Explicit list of permissions for users

• Supported by most operating systems
– Windows ≥ XP
– macOS ≥ 10.4
– Linux ≥ ext3 file system + acl package

12October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

Example: Full ACLs in POSIX systems
What if we want to use a full ACL?
• Extended attributes: stored outside of the inode
– Hold an ACL
– And other name:value attributes

• Enumerated list of permissions on users and groups
– Operations on all objects:
• delete, readattr, writeattr, readextattr, writeextattr, readsecurity, writesecurity, chown

– Operations on directories
• list, search, add_file, add_subdirectory, delete_child

– Operations on files
• read, write, append, execute

– Inheritance controls

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski 13

ACLs and ACEs
Access Control List (ACL) = list of Access Control Entries (ACE)

• ACE identifies a user or group & permissions
– Files: read, write, execute, append
– Directories:

 list, search, read attributes, add file, add sub-directory, delete contents

• “Inheritance” permission
– Files and directories can inherit ACL entries from the parent

• Wildcards are often supported

• See chmod on macOS or setfacl on Linux

14October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

Example ACL
pxk.* rwx

 419-ta.* rwx

 *.faculty rx

 . x

• Users pxk and 419-ta have read-write-execute access

• Users in the faculty group have read-execute access

• Others only have execute access

15October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

Search order
ACEs are evaluated in the order they are entered into the ACL

In this case, I don’t have write access to the file:

 419-ta.* rwx

 *.faculty rx

 pxk.* rwx

 . x

16

This is me

So is this

So is this

This appears first & has priority

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

Search order: ACLs + permissions
In systems like Linux that integrate ACLs with 9-bit permissions:

1. If you are the owner of the file, only owner permissions apply

2. If you are part of a group the file belongs to, only group permissions
apply

3. Else search through the ACL entries to find an applicable entry

4. Else other permissions apply

17October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

macOS Examples

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski 18

macOS ACL examples (1)
• Create a file
$ echo hello > hi.txt
$ cat hi.txt

hello

• List the file
– Show ACEs with -e option to ls
$ ls -l hi.txt
-rw-r--r-- 1 paul wheel 6 Sep 13 23:01 hi.txt

$ ls -le hi.txt
-rw-r--r-- 1 paul wheel 6 Sep 13 23:01 hi.txt

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski 19

No ACL!

macOS ACL examples (2)
• Take away read & write access
– Add an access control entry with chmod +a
– Remove an access control entry with chmod –a
$ chmod +a "paul deny read,write" hi.txt

• See what we have
$ ls -le hi.txt
-rw-r--r--+ 1 paul wheel 6 Sep 13 23:01 hi.txt
0: user:paul deny read,write

• Add append access
$ chmod +a "paul allow append" hi.txt
$ ls -le hi.txt
-rw-r--r--+ 1 paul wheel 6 Sep 13 23:01 hi.txt
 0: user:paul deny read,write
 1: user:paul allow append

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski 20

ACL

ACL

macOS ACL examples (3)
• Try reading and writing to the file

$ echo "new data" >hi.txt
bash: hi.txt: Permission denied

$ cat hi.txt
cat: hi.txt: Permission denied

• But we can append
$ echo "appended data" >>hi.txt
$ ls –l hi.txt

-rw-r--r--+ 1 paul wheel 20 Sep 13 23:16 hi.txt

• Useful for granting users append-only access to a log file

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski 21

It’s bigger: 20 bytes vs. 6

macOS ACL examples (4)
• Remove Access Control Entry #0

$ ls -le hi.txt
-rw-r--r--+ 1 paul wheel 20 Sep 13 23:16 hi.txt

 0: user:paul deny read,write
 1: user:paul allow append
$ chmod -a# 0 hi.txt
$ ls -le hi.txt
-rw-r--r--+ 1 paul wheel 20 Sep 13 23:16 hi.txt
 0: user:paul allow append

• Now we can see the file
$ cat hi.txt
hello
appended data

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski 22

The “deny read, write” entry is gone

chmod -a# N removes rule N

Changing Permissions

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski 23

Initial file permissions
On Unix-derived systems (Linux, macOS, Android, *BSD):
• umask = set of permissions applications cannot set on files
– Bitmask (octal) of bits that will be turned off

• To disallow read-write-execute for everyone but the owner
– umask = 000 111 111 = 077

• Default umask on macOS & Ubuntu is 022
– 022 = 000 010 010 = --- -w- -w-
– This takes away write access from group & other
– By default, new files are readable by all and writable only by the owner

See the umask command and umask system call man pages
24October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

Watch out for race conditions!
Suppose we create a file readable by all: rwxr--r--

 rwx, r, r

• And then we change the permissions to rwx------
 rwx, -, -

• We don’t know when the attacker will hit

• Once the attacker has the file open, changing permissions does not take access away
– Access rights are only checked when the file is opened!

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski 25

Create a file: rwx-r--r-
Change permissions to rwx------
[Attacker opens the file for reading]
Do your work

Create a file: rwx-r--r-
[Attacker opens the file for reading]
Change permissions to rwx------
Do your work

GOOD BAD

#!/bin/bash

myapp >secretfile

chmod go-r secretfile

Giving files away
• You can change the owner of a file
 chown alice testfile

– Changes the file’s owner to alice

• You can change the group of a file too
 chgrp accounting testfile

– Changes the file’s group to accounting

… but you have to be the owner to do either

26October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

Changing user & group IDs
• root = uid 0 = super user
– Access to everything

• How do you log in?
– login program runs as uid=0
– Gets your credentials
– Authenticates you
– Then:

27

chdir(home_directory);
setgid(group_id);
setuid(user_id);
execve(user_shell, …);

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

Changing user ID temporarily
• What if some files need special access?
– A print program needs to access the printer queue
– A database needs to access its underlying files

• An executable file normally runs under the user’s ID

• A special permission bit, the “setuid bit” changes this
– Executable files with the setuid bit

will run with the effective UID set to the owner of the file
– Directories with the setuid bit set

will force all files and sub-directories created in them to be owned by the directory owner

• Same thing with groups – the setgid permission bit
– Executable files with this bit set will run with effective gid set to the gid of the file.

28October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

Principle of Least Privilege
At each abstraction layer, every element (user, process, function) should be able to
access only the resources necessary to perform its task
Even if an element is compromised, the scope of damage is limited

Consider:
– Good: You cannot kill another user’s process
– Good: You cannot open the /etc/hosts file for writing
– Good: Private member functions & local variables in functions limit scope

– Violation: a compromised print daemon allows someone to add users
– Violation: a process can write a file even though there is no need to
– Violation: admin privileges set by default for any user account

Least privilege is often difficult to define & enforce
October 14, 2024 CS 419 © 2024 Paul Krzyzanowski 29

Privilege Separation

Divide a program into multiple parts: high & low privilege components
Example on POSIX systems
– Each process has a real and effective user ID
– Privileges are evaluated based on the effective user ID
• Normally, uid == euid

– An executable file may be tagged with a setuid bit
• chmod +sx filename

• When run: uid = user’s ID
 euid = file owner’s ID (without setuid, runs with user’s ID)

– Separating a program
1. Run a setuid program
2. Create a communication link to self (pipe, socket, shared memory)
3. fork
4. One of the processes will call seteuid(getuid()) to lower its privilege

30

Low
privilege part

High
privilege part

User interaction

October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

Setuid can get you into trouble!
• Most setuid programs ran as root

• If they were compromised, the whole system was compromised

• This was one of the best attack vectors for Unix/Linux systems

31October 14, 2024 CS 419 © 2024 Paul Krzyzanowski

The End

October 14, 2024 32CS 419 © 2024 Paul Krzyzanowski

