
CS 419: Computer Security

Paul Krzyzanowski

Week 7: Code Injection & Overflows

© 2024 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 2

Program Hijacking
Part 1

Hijacking & Injection
Hijacking
Getting software to do something different from what the user or developer expected

• Session hijacking: take over someone’s communication session
– Typically from a web browser
– Usually involves stealing a session token that identifies the user and authorizes access

• Program hijacking: get a program to execute unintended operations
– Command injection
• Send commands to a program that are then executed by the system shell
• Includes SQL injection – send database commands

– Code injection
• Inject code into a program that is then executed by the application

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 3

Examples of Hijacking
• Session hijacking
– Snoop on a communication session to get authentication info and take control of the session
– Perform a Man-in-the-Middle (MitM) attack to let a user log in and then drop them

• Code injection
– Overflow an input buffer and cause new code to run
– Provide JavaScript as input that will later get executed (Cross-site scripting)
– Library injection: load different dynamic libraries that cause different versions of code run

• Command injection
– Provide input that will will not be parsed correctly, causing parts of it to run as a system command
– Change search paths to run different programs

• Other forms
– Redirect web browser to a malicious site
– Change DNS (IP address lookup) results to direct users to malicious addresses
– Change the browser’s default search engine

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 4

Security-Sensitive Programs
• Control hijacking isn’t interesting for regular programs on your system
– You might as well just run commands from the shell

• It is interesting if the program
– Has elevated privileges (setuid), especially runs as root
– Runs on a system you don’t have access to (most servers)

Privileged programs are more sensitive & more useful targets

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 5

Bugs and mistakes
• Most attacks are due to
– Social engineering: getting a legitimate user to do something
– Or exploiting vulnerabilities: using a program in a way it was not intended
• This includes buggy security policies

• An attacked system may be further weakened because of poor access
control rules
– Allowing the attacker to do more than the compromised application – a violation of the

Principle of Least Privilege

• Cryptography won’t save us!
– And cryptographic software can also be buggy

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 6

Unchecked Assumptions
• Unchecked assumptions can lead to vulnerabilities
– Vulnerability: weakness that can be exploited to perform unauthorized actions

• Attack
– Discover these assumptions
– Craft an exploit to render them invalid … and run the exploit

• Four common assumptions:
1. The buffer is large enough for the data
2. Integer overflow doesn’t exist
3. User input will never be processed as a command
4. A file is in a proper format

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 7

Buffer Overflow

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 8

What is a buffer overflow?
Programming error that allows more data to be stored in an array than
there is allocated space for the object

• Buffer = chunk of memory on the stack, heap, or static data

• Overflow means adjacent memory will be overwritten
– Program data can be modified
– New code can be injected
– Unexpected transfers of control can be launched

9October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Buffer overflows
Buffer overflows used to be responsible for ~50% of vulnerabilities

• We know how to defend ourselves but
– Average time to patch a bug >> 1 year
– People delay updating systems … or refuse to
– Embedded systems often never get patched
• Routers, cable modems, set-top boxes, access points, IP phones, and security cameras

– Insecure access rights often help with gaining access or more privileges
– We continue to write buggy code!

10October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Buffer overflows … still happening
September 9, 2024: CVE-2017-1000253
– Linux Kernel PIE Stack Buffer Corruption Vulnerability
– May cause a system crash or remotely execute code

July 22, 2024: CVE-2024-35467
– Stack-based buffer overflow in ASUS's RT-AC87U devices
– May cause a system crash or remotely execute code

May 8, 2024: CVE-2024-4559
– Heap buffer overflow in WebAudio in Google Chrome
– An attacker could exploit this via a crafted HTML page.

April 26, 2024: CVE-2024-25048
– Heap buffer overflow in IBM MQ
– caused by improper bounds checking.
– A remote authenticated attacker could overflow a buffer and

execute arbitrary code on the system or cause the server to crash.

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 11

Buffer overflows … still happening
Jan 17, 2024: PixieFail
– Collection of 9 vulnerabilities that affect UEFI
– Includes 3 buffer overflows
• Choosing an overly long Server ID option in the DHCPv6client
• Processing DNS Servers option in a DHCPv6
• handling a Server ID option from a DHCPv6 proxy Advertise message

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 13

https://arstechnica.com/security/2024/01/new-uefi-vulnerabilities-send-firmware-devs-across-an-entire-ecosystem-scrambling/2/

Buffer overflows … still happening
October 5, 2023
– GNU C Library's dynamic loader
– Affects the processing of the GLIBC_TUNABLES environment

variable, a feature introduced in glibc to allow users to fine-tune
the library's behavior at runtime.

– "Can allow attackers to gain root privileges, enabling
unauthorized data access, alteration or deletion and potentially
leveraging further attacks by escalating privileges"

– Easily exploitable, and arbitrary code execution is a real and
tangible threat

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 14

https://www.infosecurity-magazine.com/news/critical-glibc-bug-puts-linux-risk/

Buffer overflows … still happening
July 28, 2020 – SIGRed vulnerability
– Exploits buffer overflow in Windows DNS Server processing

of SIG records
• A field that holds a signature for use with secure DNS

– Allows an attacker to create a denial-of-service attack
– Bug existed for 17 years – discovered in 2020!
• A function expects 16-bit integers to be passed to it
• If they are not the proper size, it will overflow other integers
• Attacker needs to create a DNS response that contains a SIG

record > 64KB

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 18

https://www.assurainc.com/a-vulnerability-called-sigred-cve-2020-1350-exploits-a-buffer-overflow-within-the-way-that-windows-dns-servers-process-sig-resource-record-types/amp-on/

22

https://arstechnica.com/information-technology/2019/05/whatsapp-vulnerability-exploited-to-infect-phones-with-israeli-spyware/

WhatsApp vulnerability
exploited to infect phones
with Israeli spyware
Attacks used app's call function. Targets didn't have
to answer to be infected.
DAN GOODIN - 5/13/2019, 10:00 PM

Attackers have been exploiting a vulnerability in WhatsApp that allowed them to infect phones with advanced spyware made by
Israeli developer NSO Group, the Financial Times reported on Monday, citing the company and a spyware technology dealer.

A representative of WhatsApp, which is used by 1.5 billion people, told Ars that company researchers discovered the vulnerability
earlier this month while they were making security improvements. CVE-2019-3568, as the vulnerability has been indexed, is a buffer
overflow vulnerability in the WhatsApp VOIP stack that allows remote code execution when specially crafted series of SRTCP
packets are sent to a target phone number, according to this advisory.

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

2019 WhatsApp Buffer Overflow Vulnerability
• WhatsApp messaging app could install malware on Android, iOS,

Windows, & Tizen operating systems
An attacker did not have to get the user to do anything: the attacker just places a
WhatsApp voice call to the victim.

• This was a zero-day vulnerability
– Attackers found & exploited the bug before the company could patch it

• WhatsApp used by 1.5 billion people
– Vulnerability discovered in May 2019 while developers were making security

improvements

23

https://arstechnica.com/information-technology/2019/05/whatsapp-vulnerability-exploited-to-infect-phones-with-israeli-spyware/

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Many, many more!

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 24

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow

938 buffer overflow vulnerabilities
& 1597 total overflow vulnerabilities

reported in 2024 so far

Buggy libraries can affect a lot of code bases

July 2017 – Devil's Ivy
(CVE-2017-9765)
– gsoap open source toolkit
– Enables remote attacker to execute

arbitrary code
– Discovered during the analysis of an

internet-connected security camera

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 25

https://latesthackingnews.com/2017/07/18/millions-of-iot-devices-are-vulnerable-to-buffer-overflow-attack/

The classic buffer
overflow bug

gets.c from macOS:
© 1990,1992 The Regents of the University of California.
gets(buf)
char *buf;
 register char *s;
 static int warned;
 static char w[] = "warning: this program uses gets(),

which is unsafe.\r\n";

 if (!warned) {
 (void) write(STDERR_FILENO, w, sizeof(w) - 1);
 warned = 1;
 }
 for (s = buf; (c = getchar()) != '\n';)
 if (c == EOF)
 if (s == buf)
 return (NULL);
 else
 break;
 else
 *s++ = c;
 *s = 0;
 return (buf);
}

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 26

The classic buffer
overflow bug

gets.c from OS X: © 1990,1992 The Regents of the University
of California.

gets(buf)
char *buf;
 register char *s;
 static int warned;
 static char w[] = "warning: this program uses gets(),

which is unsafe.\r\n";

 if (!warned) {
 (void) write(STDERR_FILENO, w, sizeof(w) - 1);
 warned = 1;
 }
 for (s = buf; (c = getchar()) != '\n';)
 if (c == EOF)
 if (s == buf)
 return (NULL);
 else
 break;
 else
 *s++ = c;
 *s = 0;
 return (buf);
}

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 29

for (s = buf; (c = getchar()) != '\n';)
 if (c == EOF)
 if (s == buf)
 return (NULL);
 else
 break;
 else
 *s++ = c;

for (s = buf; (c = getchar()) != '\n';)
 if (c == EOF)
 if (s == buf)
 return (NULL);
 else
 break;
 else
 *s++ = c;

C++ too – and no warnings!

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 30

#include <iostream>

using namespace std;

int main()
{
 char x[4] = "cat";
 char y[4];
 char z[4] = "dog";

 cout << "Enter a word:";
cin >> y;

 cout << "Read " << strlen(y) << " characters." << endl;
 cout << "x: " << x << endl;
 cout << "y: " << y << endl;
 cout << "z: " << z << endl;
}

C++ too – and no warnings!

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 31

#include <iostream>

using namespace std;

int main()
{
 char x[4] = "cat";
 char y[4];
 char z[4] = "dog";

 cout << "Enter a word:";
cin >> y;

 cout << "Read " << strlen(y) << " characters." << endl;
 cout << "x: " << x << endl;
 cout << "y: " << y << endl;
 cout << "z: " << z << endl;
}

$ g++ -o cin cin.cpp
Enter a word:abcdefg
Read 7 characters.
x: efg
y: abcdefg
z: dog

The data in y overflowed to x
x got corrupted

C++ too – and no warnings!

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 32

#include <iostream>

using namespace std;

int main()
{
 char x[4] = "cat";
 char y[4];
 char z[4] = "dog";

 cout << "Enter a word:";
cin >> y;

 cout << "Read " << strlen(y) << " characters." << endl;
 cout << "x: " << x << endl;
 cout << "y: " << y << endl;
 cout << "z: " << z << endl;
}

$ g++ -o cin cin.cpp
Enter a word:abcdefghijklmnopqrstuvwxyz0123456789
Read 36 characters.
x: efghijklmnopqrstuvwxyz0123456789
y: abcdefghijklmnopqrstuvwxyz0123456789
z: dog
Bus error: 10

With even more data,
x got corrupted
AND the program crashed!

Buffer overflow examples

33

void test(void) {
 char name[10];

 strcpy(name, "krzyzanowski");
}

That’s easy to spot!

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Another example

34

char configfile[256];
char *base = getenv("BASEDIR");

if (base != NULL)
 sprintf(configfile, "%s/config.txt", base);
else {
 fprintf(stderr, "BASEDIR not set\n");
}

How about this?

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Buffer overflow attacks
To exploit a buffer overflow:

Identify if there’s an overflow vulnerability in a program
– Black box testing
• Trial and error
• Fuzzing tools (more on that …)

– Inspection
• Study the source
• Trace program execution

Understand where the buffer is in memory and whether there is
potential for corrupting surrounding data

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 35

What’s the harm?
Execute arbitrary code, such as starting a shell

Code injection, stack smashing
– Code runs with the privileges of the program
• If the program is setuid root then you have root privileges
• If the program is on a server, you can run code on that server

• Even if you cannot inject code…
– You may crash the program (Denial of Service attack)
– Change how it behaves
– Modify data

• Sometimes the crashed code can leave a core dump
– You can access that and grab data the program had in memory

36October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Note: this test did not succeed

Taking advantage of unchecked bounds

37

#include <stdio.h>
#include <strings.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{
 char pass[5];
 int correct = 0;

 printf("enter password: ");
 gets(pass);
 if (strcmp(pass, "test") == 0) {
 printf("password is correct\n");
 correct = 1;
 }
 if (correct) {
 printf("authorized: running with root privileges...\n");
 exit(0);
 }
 else
 printf("sorry - exiting\n");
 exit(1);
}

$./buf
enter password: abcdefghijklmnop
authorized: running with root privileges...

Run on my Raspberry Pi
 Raspbian GNU/Linux 10
 5.10.63-v7l+

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

It’s a bounds checking problem
• C and C++
– Allow direct access to memory
– Do not check array bounds
– Functions often do not even know array bounds
• They just get passed a pointer to the start of an array

• This is not a problem with strongly typed languages
– Java, C#, Python, etc. check sizes of structures

• But C is in the top 4-5 of popular programming languages
– #1 for system programming & embedded systems
– And most compilers, interpreters, databases, browsers, and libraries are written

in C or C++

38October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 39

Anatomy of overflows
Part 2

Linux process memory map*

40

unused

Program (text)

Initialized data

Uninitialized data (bss)

OS High memory

0x08048000

0xc0000000

Shared libraries
0x40000000

brk
Heap

Stack

Loaded by execveCommand-line args & environment
variables

*Not to scale

Top of stack (it grows down)

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

The stack

41

func(param_1, param_2, param_3)

Calling function:
 pushl param_3
 pushl param_2
 pushl param_1
 call func
 . . .

func: pushl rbp
 movl %rsp, %rbp
 subl $20, %rsp
 . . .
 leave
 ret

Previous return address

Previous frame pointer

param_3

param_2

param_1

Return address

Saved rbp (frame pointer)

Local variable a

Local variable b

Local variable c rsp
(current stack pointer)

rbp
(current frame pointer)

High memory

Low memory

Note: rbp & rsp are used in 64-bit processors
 ebp & esp are used in 32-bit processors

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Causing overflow

Overflow can occur when programs do not validate the
length of data being written to a buffer

This could be in your code or one of several “unsafe” libraries
– strcpy(char *dest, const char *src);

– strcat(char *dest, const char *src);

– gets(char *s);

– scanf(const char *format, …)

– Others…

42October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Overflowing the buffer

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 43

void func(char *s) {
 char buf[128];

 strcpy(buf, s);
 /* ... */
}

What if strlen(s) is >127 bytes?
You overwrite the saved rbp and then the return address

Return address

Previous frame pointer

parameter (s)

Return address

Saved rbp (frame pointer)

char buf[128] rsp (current stack pointer)

rbp (current frame pointer)

High memory

Low memory

Overwriting the return address
• If we overwrite the return address
– We change what the program executes when it returns from the function

• “Benign” overflow
– Overflow with garbage data
– Chances are that the return address will be invalid
– Program will die with a SEGFAULT
– Availability attack

44October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Programming at the machine level
• High level languages (even C) constrain you in
– Access to variables (local vs. global)
– Control flows in predictable ways
• Loops, function entry/exit, exceptions

• At the machine code level
– No restriction on where you can jump
• Jump to the middle of a function … or to the middle of a C statement
• Returns will go to whatever address is on the top of the stack
• Unused code can be executed (e.g., library functions not used by the program)

45October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Subverting control flow
Malicious overflow
– Fill the buffer with malicious code

– Overflow to overwrite saved frame
pointer %rbp

– Then overwrite saved the stack pointer
(the return address) with the address of
the malicious code in the buffer

46

Previous return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

char buf[128]

MALICIOUS CODE

High memory

Low memory

Overwritten return
address

O
ve

rw
rit

te
n

ar
ea

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Subverting control flow: more code
If you want to inject a lot of code
Just go further down the stack (into higher memory)

– Initial parts of the buffer will be
garbage data … we just need to fill the buffer

– Then we have the new return address

– Then we have malicious code

– The return address points to the malicious code

47

Previous return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

char buf[128]

Junk … we don’t care what
goes here – we just need to

overflow this buffer

High memory

Low memory

Overwritten return
address

O
ve

rw
rit

te
n

ar
ea

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

MALICIOUS CODE
… still part of the

overflow of buf[128]

Start of buf[128]

Address Uncertainty
What if we’re not sure what the exact
address of our injected code is?

NOP slide = NOP sled = landing zone
– Pre-pad the code with a lots of NOP

instructions
• NOP
• moving a register to itself
• adding 0
• etc.

– Set the return address on the stack to any
address within the landing zone

48

MALICIOUS CODE
(still part of the

overflow of buf)

Return address

Saved rbp (frame pointer)

char buf[128]

OVERFLOW JUNK

High memory

Low memory

OVERFLOW JUNK

Overwritten return
addressO

ve
rw

rit
te

n
ar

ea NOP – NOP – NOP – NOP

NOP – NOP – NOP – NOP
NOP – NOP – NOP – NOP

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Off-by-one overflows

49October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Off-by-one overflow
Feb. 2, 2021: Linux sudo
– Heap-based buffer overflow vulnerability
– An attacker could exploit this vulnerability to

take control of an affected system.

– Off-by-one error
• Can result in a heap-based buffer overflow,

which allows privilege escalation to root via
"sudoedit -s" and a command-line
argument that ends with a single backslash
character.

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 50

https://www.cisa.gov/uscert/ncas/current-activity/2021/02/02/sudo-heap-based-buffer-overflow-vulnerability-cve-2021-3156

Safe functions aren’t always safe
• Safe counterparts require a count
– strcpy → strncpy
– strcat → strncat
– sprintf → snprintf

• But programmers can miscount!

51

char buf[512];
int i;

for (i=0; i<=512; i++)
 buf[i] = stuff[i];

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Off-by-one errors
• We can’t overwrite the return address

• But we can overwrite one byte of the saved frame pointer
– Least significant byte on Intel/ARM systems
• Little-endian architecture

• What’s the harm of overwriting
the frame pointer?

52

Return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

char buf[128]

MALICIOUS CODE

High memory

Low memory

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Off-by-one errors: frame pointer mangling
At the end of a function:
– The compiler resets the stack pointer (%rsp) to the base of the frame (%rbp):

 mov %rsp, %rbp
– and restores the saved frame pointer (which we corrupted) from the top of the stack:

 pop %rbp pops corrupted frame pointer into rbp, the frame pointer
 ret

The program now has the wrong frame pointer when the function returns

The function returns normally –
we could not overwrite the return address

BUT … when the function that called it tries to return, it will update
the stack pointer to what it thinks was the valid base pointer and
return there:

 mov %rsp, %rbp rbp is our corrupted FP that is now the stack pointer
 pop %rbp we don’t care about the base pointer
 ret return pops the stack from our buffer, so we can jump anywhere

53October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

char buf[128]

MALICIOUS CODE

High memory

Low memory

Junk frame pointer

Malicious return address

Off-by-one errors: frame pointer mangling
• Stuff the buffer with
– Malicious code, pointed to by “saved” %rip
– “saved” %rbp (can be garbage)
– “saved” %rip (return address)
– 1 byte overflow to have the saved FP point to the buffer

• When the function’s calling function returns
– It will return to the “saved” %rip, which

points to malicious code in the buffer

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 54

Return address

Previous frame pointer

params

Return address

Saved rbp (frame pointer)

char buf[128]

MALICIOUS CODE

High memory

Low memory

Junk frame pointer

Malicious return address

Heap & text overflows

55October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Linux process memory map

56

unused

Program (text)

Initialized data

Uninitialized data (bss)

OS High memory

0x08048000

0xc0000000

Shared libraries
0x40000000

brk
Heap

Stack

Loaded by execve

Command-line args & environment
variables

• Statically allocated variables &
dynamically allocated memory
(malloc) are not on the stack

• Heap data & static data do not
contain return addresses
– No ability to overwrite a return

address

Are we safe?

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Memory overflow

57

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

char a[15];
char b[15];

int
main(int argc, char **argv)
{
 strcpy(b, "abcdefghijklmnopqrstuvwxyz");
 printf("a=%s\n", a);
 printf("b=%s\n", b);
 exit(0);
}

a=qrstuvwxyz
b=abcdefghijklmnopqrstuvwxyz

The program

The output
(Linux 4.4.0-59, gcc 5.4.0)

We may be able to overflow a
buffer and overwrite other
variables in higher memory

For example, overwrite a file
name

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Memory overflow – filename example

58

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

char afile[20];
char mybuf[15];

int main(int argc, char **argv)
{
 strncpy(afile, "/etc/secret.txt", 20);
 printf(”Planning to write to %s\n", afile);
 strcpy(mybuf, "abcdefghijklmnop/home/paul/writehere.txt");
 printf("About to open afile=%s\n", afile);
 exit(0);
}

Planning to write to /etc/secret.txt
About to open afile=/home/paul/writehere.txt

The program

The output
(Linux 5.10.63, gcc 8.3.0)

mybuf can overflow into afileWe overwrote the file
name afile by writing
too much into mybuf!

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Overwriting variables: changing control flow
• Even if a buffer overflow does not touch the stack, it can modify

global or static variables

• Example:
– Overwrite a function pointer
– Function pointers are often

used in callbacks

59

int callback(const char* msg)
{
 printf(“callback called: %s\n”, msg);
}

int main(int argc, char **argv)
{
 static int (*fp)(const char *msg);
 static char buffer[16];

 fp = (int(*)(const char *msg))callback;
 strcpy(buffer, argv[1]);
 (int)(*fp)(argv[2]); // call the callback
}

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

The exploit
• The program takes the first two arguments from the command line
• It copies argv[1] into a buffer with no bounds checking

• It then calls the callback,
passing it the message
from the 2nd argument

The exploit
– Overflow the buffer
– The overflow bytes will contain the

address you really want to call
• They’re strings, so bytes with 0 in

them will not work … making this a
more difficult attack

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 60

int callback(const char* msg)
{
 printf(“callback called: %s\n”, msg);
}

int main(int argc, char **argv)
{
 static int (*fp)(const char *msg);
 static char buffer[16];

 fp = (int(*)(const char *msg))callback;
 strcpy(buffer, argv[1]);
 (int)(*fp)(argv[2]); // call the callback
}

printf attacks

61October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

printf and its variants
Standard C library functions for formatted output
– printf: print to the standard output
– wprintf: wide character version of printf
– fprintf, wfprintf: print formatted data to a FILE stream
– sprintf, swprintf: print formatted data to a memory location
– vprintf, vwprintf,vfprintf, vwfprintf :

 print formatted data containing a pointer to argument list

Usage
printf(format_string, arguments ...)

printf(“The number %d in decimal is %x in hexadecimal\n”, n, n);
printf(“my name is %s\n”, name);

62October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Bad usage of printf
Programs often make mistakes with printf

Valid:
printf(“hello, world!\n”)

Also accepted … but not right
char *message = “hello, world\n”);
printf(message);

This works but exposes the chance that message will be changed

63

This should be a format string

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Dumping memory with printf

64

#include <stdio.h>
#include <string.h>

int
show(char *buf)
{
 printf(buf); putchar('\n');
 return 0;
}

int
main(int argc, char **argv)
{
 if (argc == 2) {
 show(argv[1]);
 }
}

$./tt hello
hello

$./tt "hey: %012lx"
hey: 7fffe14a287f

printf does not know how many arguments it has.
It deduces that from the format string.

If you don’t give it enough, it keeps reading from the
stack

We can dump arbitrary memory by walking up the stack

$./tt %08x.%08x.%08x.%08x.%08x
6d10c308.6d10c320.85d636f0.a1b80d80.a1b80d80

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Getting into trouble with printf
Have you ever used %n ?

Format specifier that will store into memory the number of bytes written so far
 int printbytes;

 printf("paul%n says hi\n", &printbytes);

Will print
 paul says hi

and will store the number 4 (which is the value of strlen(“paul”)) into
the variable printbytes

If we combine this with the ability to change the format specifier, we can write
to other memory locations

65October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Bad usage of printf: %n

66

#include <stdio.h>
#include <string.h>

int
show(char *buf)
{
 printf(buf);

putchar('\n');
 return 0;
}

int
main(int argc, char **argv)
{
 char buf[256];

 if (argc == 2) {
 strncpy(buf, argv[1], 255);
 show(buf);
 }
}

Buffer

Pointer to buffer

Return address

Pointer to buffer (printf format)

Return address

sh
ow

pr
in

tf

printf treats this as the 1st parameter after the
format string.
• We can skip ints with formatting strings such

as %x
• The buffer can contain the address that we

want to overwrite

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Saved frame pointer

Saved frame pointer

printf attacks: %n
What good is %n when it’s just # of bytes written?
– You can specify an arbitrary number of bytes in the format string

 printf(“%.622404x%.622400x%n” . . .

Will write the value 622404+622400 = 1244804 = 0x12fe84

What happens?
– %.622404x = write at least 622404 characters for this value
– Each occurrance of %x (or %d, %b, ...) will go down the stack by one parameter (usually 8

bytes). We don‘t care what gets printed
– The %x directives enabled us to get to the place on the stack where we want to change a

value
– %n will write that value, which is the sum of all the bytes that were written

67October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 68

Defending against hijacking attacks
Part 3

Fix bugs
• Audit software

• Check for buffer lengths whenever adding to a buffer

• Search for unsafe functions
– Use nm and grep to look for function names

• Use automated tools
– Clockwork, CodeSonar, Coverity, Parasoft, PolySpace, Checkmarx, PREfix,

PVS-Studio, PCPCheck, Visual Studio

• Most compilers and/or linkers now warn against bad usage

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 69

tt.c:7:2: warning: format not a string literal and no format arguments [-Wformat-security]

zz.c:(.text+0x65): warning: the 'gets' function is dangerous and should not be used.

Fix bugs: Fuzzing
Do what the attackers do and try to locate unchecked assumptions!

• Generate semi-random data as input to detect bugs
– Locating input validation & buffer overflow problems
– Enter unexpected input
– See if the program crashes

• Enter long strings with searchable patterns

• If the app crashes
– Search the core dump for the fuzz pattern to find where it died

• Automated fuzzer tools help with this
– E.g., libFuzzer and AFL in C/C++; cargo-fuzz in Rust, Go Fuzzing

• Or … try to construct exploits using gdb
October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 70

Don’t use C or C++
• Most other languages feature
– Run-time bounds checking
– Parameter count checking
– Disallow reading from or writing to arbitrary memory locations

• Hard to avoid in many cases
– Lots of legacy code
– Performance concerns, CPU load
– Programmer skill, availability of libraries, long-term support
– Top contenders: Rust and Go
• Rust: created by Mozilla – Memory safety with the efficiency of C/C++
• Go: created by Google – fast, compiled code
• Go designed for faster compilation, Rust is designed for faster execution

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 72

https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/nsa-releases-guidance-on-how-to-protect-against-software-memory-safety-issues/

Don’t use C or C++
• Google’s switch to memory-safe

languages led to the % of memory-safe
vulnerabilities in Android dropping from
76% to 24% over six years.

• Google announced support for Rust in
Android in 2021

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 73

https://thehackernews.com/2024/09/googles-shift-to-rust-programming-cuts.html

Don’t use C or C++
• White House Office of the National Cyber

Director called on developers to use
languages without memory safety
vulnerabilities

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 74

https://www.infoworld.com/article/2336216/white-house-urges-developers-to-dump-c-and-c.html
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

Don’t use C or C++

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 75

https://www.theregister.com/2024/08/03/darpa_c_to_rust/

Specify & test code
• If it’s in the specs, it is more likely to be coded & tested

• Document acceptance criteria
– “File names longer than 1024 bytes must be rejected”
– “User names longer than 32 bytes must be rejected”

• Use safe functions that check & allow you to specify buffer limits

• Ensure consistent checks to the criteria across entire source
– Example, you might #define limits in a header file but some files might use a

mismatched number.

• Don't allow user-generated format strings and check results from printf

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 76

Safer libraries
• Compilers warn against unsafe strcpy or printf

• Ideally, fix your code!

• Sometimes you can’t recompile (e.g., you lost the source)
• libsafe
– Dynamically loaded library
– Intercepts calls to unsafe functions
– Validates that there is sufficient space in the current stack frame

 (framepointer – destination) > strlen(src)

77October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

Dealing with buffer overflows: No Execute (NX)
Data Execution Prevention (DEP)
– Disallow code execution in data areas – on the stack or heap
– Set MMU per-page execute permissions to no-execute
– Intel and AMD added this support in 2004

Used in Windows, Linux, and macOS

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 78

No Execute – not a complete solution
No Execute Doesn’t solve all problems
– Some applications need an executable stack (some LISP interpreters)
– Some applications need an executable heap
• code loading/patching
• JIT (just-in-time) compilers

– Does not protect against heap & function pointer overflows
– Does not protect against printf problems

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 79

Return-to-libc
• Allows bypassing need for non-executable memory
– With DEP, we can still corrupt the stack … just not execute code from it

• No need for injected code

• Instead, reuse functionality within the exploited app

• Use a buffer overflow attack to create a fake frame on the stack
– Transfer program execution to the start of a library function
– libc = standard C library … every program uses it!
– Most common library function to exploit: system
• Runs the shell with a specified command
• New frame in the buffer contains a pointer to the command to run (which is also in the buffer)
– E.g., system(“/bin/sh”)

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 80

Return Oriented Programming (ROP)
• Overwrite the return address on the stack with the address of a library function
– Does not have to be the start of the library routine
• Use “borrowed chunks” of code from various libraries

– When the library gets to a RET instruction, that location is on the stack, under the attacker’s control

• Chain together sequences of code ending in RET
– Build together “gadgets” for arbitrary computation
– Buffer overflow contains a sequence of addresses that direct each successive RET instruction

• An attacker can use ROP to execute arbitrary algorithms without injecting new code
into an application
– Removing dangerous functions, such as system, is ineffective
– To make attacking easier: use a compiler that combines gadgets!
• Example: ROPC – a Turing complete compiler, https://github.com/pakt/ropc

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 81

Dealing with buffer overflows & ROP: ASLR
Addresses of everything in the code were well known
– Dynamically-loaded libraries were loaded in the same place each time, as was the stack &

memory-mapped files
– Well-known locations make them branch targets in a buffer overflow attack

Address Space Layout Randomization (ASLR)
– Position stack and memory-mapped files to random locations
– Position libraries at random locations
• Libraries must be compiled to produce position-independent code

– Implemented in all modern operating systems
• OpenBSD, Windows ≥Vista, Windows Server ≥2008, Linux ≥2.6.15, macOS, Android ≥4.1, iOS ≥4.3

– But … not all libraries (modules) can use ASLR
• And it makes debugging difficult

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 82

Address Space Layout Randomization
• Entropy
– How random is the placement of memory regions?
– If it's not random enough then attackers can guess

• Examples
– Linux Exec Shield
• 19 bits of stack entropy, 16-byte alignment – resulted in > 500K positions

– Windows 7
• Only 8 bits of randomness for DLLs
– Aligned to 64K page in a 16MB region: resulted in 256 choices – far too easy to try them all!

– Windows 8
• 24 bits for randomness on 64-bit processors: >16M possible placements

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 83

Dealing with buffer overflows: Canaries
Stack canaries
– Place a random integer before the return address on the stack
– Before a return, check that the integer is there and not overwritten: a buffer overflow attack

cannot overwrite the return address without changing the canary

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 84

int a, b=999;
char s[5], t[7];

gets(s);

Return addr
a
b

s[5]
t[7]

no canary

m
em

or
y

at
 ri

sk

Stack

Dealing with buffer overflows: Canaries
Stack canaries
– Place a random integer before the return address on the stack
– Before a return, check that the integer is there and not overwritten: a buffer overflow attack

cannot overwrite the return address without changing the canary

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 85

int a, b=999;
char s[5], t[7];

gets(s);

saved frame pointer

a
b

s[5]
t[7]

no canary

m
em

or
y

at
 ri

sk saved frame pointer

CANARY
a
b

s[5]
t[7]

at
 ri

sk

with canary

Stack Stack
parameters

return addr

parameters

return addr

Refining Stack Canaries: Reordering Variables
IBM’s ProPolice gcc patches – later incorporated into gcc
– Allocate local arrays into higher memory (below) other local variables in the stack
– Ensures that a buffer overflow attack will not clobber non-array variables
– Increases the likelihood that the overflow won’t attack the logic of the current function

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 86

saved frame pointer

a
b

s[5]
t[7]

saved frame pointer

CANARY
s[5]
t[7]
a
b

at
 ri

sk

no canary with canary

Stack Stack
parameters

return addr

parameters

return addr

int a, b=999;
char s[5], t[7];

gets(s);

Stack canaries
• Not foolproof

• Heap-based attacks are still possible

• Performance impact
– Need to generate a canary on entry to a function

and check canary prior to a return
– Minimal performance degradation ~8% for apache web server

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 87

Intel CET: Control-Flow Enforcement Technology
Developed by Intel & Microsoft to thwart ROP attacks
– Available starting with the Tiger Lake microarchitecture (mid-2020)

Two mechanisms
1. Shadow stack

– Secondary stack
• Only stores return addresses
• MMU attribute disallows use of regular store instructions to modify it

– Stack data overflows cannot touch the shadow stack – cannot change the control flow

2. Indirect branch tracking

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 88

Intel CET: Control-Flow Enforcement Technology
Indirect Branch Tracking
– Restrict a program’s ability to use jump tables

– Jump table = table of memory locations the program can branch
• Used for switch statements & various forms of lookup tables

– Jump-Oriented Programming (JOP) and Call Oriented Programming (COP)
• Techniques where attackers abuse JMP or CALL instructions
• Like Return-Oriented Programming but use gadgets that end with indirect branches

– New ENDBRANCH (ENDBR64) instruction allows a programmer to specify valid targets for
indirect jumps
• If you take an indirect jump, it has to go to an ENDBRANCH instruction
• If the jump goes anywhere else, it will be treated as an invalid branch and generate a fault

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 89

Heap attacks – Protecting Pointers
• Encrypt pointers (especially function pointers)
– Example: XOR with a stored random value
– Any attempt to modify them will result in invalid addresses
– XOR with the same stored value to restore original value

• Degrades performance when function pointers are used

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 90

Hardware Attacks: Example - Rowhammer

DDR4 memory protections are broken wide open
by new Rowhammer technique
Researchers build "fuzzer" that supercharges potentially serious bitflipping exploits.
Dan Goodin • 11/15/2021

Rowhammer exploits that allow unprivileged attackers to change or corrupt data stored in vulnerable
memory chips are now possible on virtually all DDR4 modules due to a new approach that neuters
defenses chip manufacturers added to make their wares more resistant to such attacks.

Rowhammer attacks work by accessing—or hammering—physical rows inside vulnerable chips
millions of times per second in ways that cause bits in neighboring rows to flip, meaning 1s turn to 0s
and vice versa. Researchers have shown the attacks can be used to give untrusted applications nearly
unfettered system privileges, bypass security sandboxes designed to keep malicious code from
accessing sensitive operating system resources, and root or infect Android devices, among other
things.

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 91

https://arstechnica.com/gadgets/2021/11/ddr4-memory-is-even-more-susceptible-to-rowhammer-attacks-than-anyone-thought/

Hardware Attacks: Example - Rowhammer
• RowHammer was disclosed in 2014
– Exploits memory architecture to alter data by repeatedly accessing a specific row
– This introduces random bit flips in neighboring memory rows

• 2021: new attack technique discovered
– Uses non-uniform patterns that access two or more rows with different frequencies
– Bypasses all defenses built into memory hardware
– 80% of existing devices can be hacked this way
– Cannot be patched!

• Sample attacks
– Gain unrestricted access to all physical memory by changing bits in the page table entry
– Give untrusted applications root privileges
– Extract encryption key from memory

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 92

Fixed? Nope – introducing ZenHammer
• Manufacturers tried to mitigate this

problem

• But in March, 2024…
– Researchers created a new variant of the

attack
– ZenHammer acts like Rowhammer but

can also flip bits on DDR5 devices

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 93

10/22/24 CS 419 © 2024 Paul Krzyzanowski 94

Integer Overflow
Part 4

Minimum & maximum values for integers

• Arbitrary precision libraries may be available
– But processors don’t do arbitrary precision math, so there’s a performance penalty

10/22/24 CS 419 © 2024 Paul Krzyzanowski 95

Size Unsigned Signed
8-bit (1 byte) 0 .. 255 -128 .. +127
16-bit (2 bytes) 0 .. 65,535 -32,768 .. +32765
32-bit (4 bytes) 0 .. 4,294,967,295 -2,147,483,648 .. 2,147,483,647
64-bit (8 bytes) 0 ..

18,446,744,073,709,551,617
-9,223,372,036,854,775,808 ..
+9,223,372,036854,775,807

Overflows and underflows
Going outside the range causes an overflow or underflow
– No room for the extra bit
– These do not generate exceptions

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 96

11111111
+ 00000001
 100000000

255 + 1 = 0

Unsigned integer overflow
Bigger than the biggest?

10/22/24 CS 419 © 2024 Paul Krzyzanowski 97

int main(int argc, char **argv)
{
 unsigned short n = 65535;

 printf("n = %d\n", n);
 n = n + 1;
 printf("n+1 = %d\n", n);
}

What gets printed?

n = 65535
n+1 = 0

max unsigned short int

Signed integer overflow
Bigger than the biggest?

10/22/24 CS 419 © 2024 Paul Krzyzanowski 98

int main(int argc, char **argv)
{
 short n = 32767;

 printf(”n = %d\n", n);
 n = n + 1;
 printf(”n+1 = %d\n", n);
}

What gets printed?
n = 32767
n+1 = -32768

max short int

Also underflow
Smaller than the smallest?

10/22/24 CS 419 © 2024 Paul Krzyzanowski 99

int main(int argc, char **argv)
{
 short n = -32768;

 printf("n = %d\n", n);
 n = n - 1;
 printf("n-1 = %d\n", n);
}

What gets printed?
n = -32768
n-1 = 32767

max short int

Same thing for ints
Bigger than the biggest?

10/22/24 CS 419 © 2024 Paul Krzyzanowski 100

int main(int argc, char **argv)
{
 short n = 2147483647;

 printf("n = %d\n", n);
 n = n + 1;
 printf("n+1 = %d\n", n);
}

What gets printed?

n = 2147483647
n+1 = -2147483648

max int

Integer overflow - casts
Casting from unsigned to signed

10/22/24 CS 419 © 2024 Paul Krzyzanowski 101

int main(int argc, char **argv)
{
 unsigned short n = 65535;
 short i = n;

 printf("n = %d\n", n);
 printf("i = %d\n", i);
}

What gets printed?
n = 65535
i = -1

So what?
• You might not detect a buffer overflow

• If working with money
– Negative account can become positive
– Positive account can become negative

10/22/24 CS 419 © 2024 Paul Krzyzanowski 102

nresp = packet_get_int();
if (nresp > 0) {
 response = xmalloc(nresp*sizeof(char*));
 for (i = 0; i < nresp; i++)
 response[i] = packet_get_string(NULL);
}

Version 3.3 of OpenSSH

If packet_get_int returns 1073741824
and sizeof(char*) = 4,
we allocate 0 bytes for response!

But we have 64-bit architectures!
• Even 64-bit values can overflow

• If users can set a field to any value somewhere, they can set it to a
huge value and overflows can occur

• Default int size in C on Linux, macOS = 32 bits

10/22/24 CS 419 © 2024 Paul Krzyzanowski 103

Python 3 has no size limit
• Actual type is hidden from the user
– Internally, an integer (32 or 64 bit, depending on the CPU) is used and is

converted to an arbitrary-length integer object when needed

• But there’s a cost!
– 10B iterations of incrementing an int on an M2 Mac
• C: 4.44 seconds
• Java: 28.8 seconds – 6.4x slower
• Python 237 seconds – 53x slower

10/22/24 CS 419 © 2024 Paul Krzyzanowski 104

Some values are constrained
A lot of data fields in network messages use smaller values

• IP header
– time-to-live field = 8 bits, fragment offset = 16 bits, length = 16 bits

• TCP header
– Sequence #, Ack # = 32 bits, Window size = 16 bits

• GPS week # = 10 bits

10/22/24 CS 419 © 2024 Paul Krzyzanowski 105

10/22/24 CS 419 © 2024 Paul Krzyzanowski 106

Patch now! Microsoft releases fixes for the serious
SMB bug CVE-2020-0796
March 12, 2020
…
The SMBv3 vulnerability fixed this month is a doozy: A potentially network-based attack that can bring down Windows servers and
clients, or could allow an attacker to run code remotely simply by connecting to a Windows machine over the SMB network port of
445/tcp. The connection can happen in a variety of ways we describe below, some of which can be exploited without any user
interaction.
…
Microsoft fixes 116 vulnerabilities with this month’s patches, and considers 25 of them critical, and 89 important. All the critical
vulnerabilities could be used by an attacker to execute remote code and perform local privilege elevation.

https://news.sophos.com/en-us/2020/03/12/patch-tuesday-for-march-2020-fixes-the-serious-smb-bug-cve-2020-0796/

2020 SMB Bug: CVE-2020-0796 (SMBGhost)
"The vulnerability involves an integer overflow and underflow in one of the kernel drivers.
The attacker could craft a malicious packet to trigger the underflow and have an arbitrary
read inside the kernel, or trigger the overflow and overwrite a pointer inside the kernel.
The pointer is then used as destination to write data. Therefore, it is possible to get a
write-what-where primitive in the kernel address space."

Bug in the compression mechanism of SMB in Windows 10

Attacker can control two fields
– OriginalCompressedSegmentSize and Offset
– Use a huge value for OriginalCompressedSegmentSize to cause overflow
• This will cause the system to allocate fewer bytes than necessary
• Decompress will cause an overflow

10/22/24 CS 419 © 2024 Paul Krzyzanowski 107

https://blog.zecops.com/research/exploiting-smbghost-cve-2020-0796-for-a-local-privilege-escalation-writeup-and-poc/

2020 SMB Bug: CVE-2020-0796 (SMBGhost)
Program does
memcpy(Alloc->UserBuffer,
 (PUCHAR)Header + sizeof(COMPRESSION_TRANSFORM_HEADER),
 Header->Offset);

Attack
– The decompression into a smaller buffer can overflow the

User buffer
– The target of memcpy (Alloc->UserBuffer) is read from

the allocation header, which can be overwritten
– The Header contents & offset can also be set by the attacker
– The attacker can write anything anywhere in kernel memory!

10/22/24 CS 419 © 2024 Paul Krzyzanowski 108

https://blog.zecops.com/research/exploiting-smbghost-cve-2020-0796-for-a-local-privilege-escalation-writeup-and-poc/

109

Microsoft Exchange year 2022 bug in
FIP-FS breaks email delivery
Lawrence Abrams • January 1, 2022

Microsoft Exchange on-premise servers cannot deliver email starting on January 1st, 2022, due to a "Year 2022" bug in the
FIP-FS anti-malware scanning engine.

Starting with Exchange Server 2013, Microsoft enabled the FIP-FS anti-spam and anti-malware scanning engine by default
to protect users from malicious email.

Microsoft Exchange Y2K22 bug

According to numerous reports from Microsoft Exchange admins
worldwide, a bug in the FIP-FS engine is blocking email delivery with
on-premise servers starting at midnight on January 1st, 2022.

https://www.bleepingcomputer.com/news/microsoft/microsoft-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/

10/22/24 CS 419 © 2024 Paul Krzyzanowski

Is .gif a GIF file? Assumptions about file formats
• iOS Messages app
– Any embedded file with a .gif extension will be decoded before the message

is shown
• Sent to the IMTranscoderAgent process that uses the ImageIO library
• The ImageIO library ignores the file name and tries to guess the format to parse it

– Allows attackers to send files in over 20 formats, increasing the attack surface

• This was used in NSO's Pegasus malware on the iPhone
– Zero-click install via iMessages
– Sent a PDF file with a .gif file name
– Contents were compressed with JBIG2 compression

10/22/24 CS 419 © 2024 Paul Krzyzanowski 110

See https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

PDF – JBIG2 Compression – Integer Overflow
• JBIG2 compression
– Extreme compression format for black & white images
– Breaks images into segments
– Contains table with pointers to similar bitmaps

• This attack exploited an integer overflow bug
– With carefully crafted segments, the count of detected symbols could overflow
– This results in the allocated buffer being too small
– Bitmaps are then written into this buffer
– Enables attacker to control what gets written into arbitrary memory

10/22/24 CS 419 © 2024 Paul Krzyzanowski 111

PDF – JBIG2 Compression – Integer Overflow

10/22/24 CS 419 © 2024 Paul Krzyzanowski 112

Guint numSyms; // (1)
numSyms = 0;
for (i = 0; i < nRefSegs; ++i) {
 if ((seg = findSegment(refSegs[i]))) {
 if (seg->getType() == jbig2SegSymbolDict) {

numSyms += ((JBIG2SymbolDict *)seg)->getSize(); // (2)
 } else if (seg->getType() == jbig2SegCodeTable) {
 codeTables->append(seg);
 }
 } else {
 ...
...
// get the symbol bitmaps

syms = (JBIG2Bitmap **)gmallocn(numSyms, sizeof(JBIG2Bitmap *)); // (3)
 kk = 0;
 for (i = 0; i < nRefSegs; ++i) {
 if ((seg = findSegment(refSegs[i]))) {
 if (seg->getType() == jbig2SegSymbolDict) {
 symbolDict = (JBIG2SymbolDict *)seg;
 for (k = 0; k < symbolDict->getSize(); ++k) {
 syms[kk++] = symbolDict->getBitmap(k); // (4)
 }
...

Symbol count can overflow
with too many segments.
numSyms becomes a small #

32-bit symbol count

Allocated buffer becomes too small

The end

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski 113

Top Known Exploited Vulnerabilities – 2023
MITRE, a non-profit organization that manages federally-funded research & development centers,
publishes a list of top security weaknesses

119

https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html

Rank Name

1 Use After Free

2 Heap-based Buffer Overflow

3 Out-of-bounds Write

4 Improper Input Validation

5 Improper Neutralization of Special Elements used in an OS Command (OS Command
Injection)

6 Deserialization of Untrusted Data
7 Server-Side Request Forgery (SSRF)
8 Access of Resource Using Incompatible Type ('Type Confusion')

9 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

10 Missing Authentication for Critical Function

October 22, 2024 CS 419 © 2024 Paul Krzyzanowski

The End

October 22, 2024 120CS 419 © 2024 Paul Krzyzanowski

